查看全集:🏸线性代数/Linear Algebra
计算以下矩阵的行列式:
A=(3124)A = \begin{pmatrix} 3 & 1 \\ 2 & 4 \end{pmatrix} A=(3214)
使用拉普拉斯展开计算:
B=(123045106)B = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 1 & 0 & 6 \end{pmatrix} B=101240356
设矩阵 C=(2134)C = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix}C=(2314),交换其两行得到 C′C'C′,验证det(C′)=−det(C) \det(C') = -\det(C)det(C′)=−det(C)。
判断矩阵 D=(123014560)D = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{pmatrix}D=105216340 是否可逆,若可逆,求其逆矩阵。
det(A)=3⋅4−1⋅2=12−2=10\det(A) = 3 \cdot 4 - 1 \cdot 2 = 12 - 2 = 10det(A)=3⋅4−1⋅2=12−2=10
沿第二列展开(含零元素简化计算):
det(B)=2⋅(−1)1+2det(0516)+4⋅(−1)2+2det(1316)+0⋅(⋯ )\det(B) = 2 \cdot (-1)^{1+2} \det\begin{pmatrix} 0 & 5 \\ 1 & 6 \end{pmatrix} + 4 \cdot (-1)^{2+2} \det\begin{pmatrix} 1 & 3 \\ 1 & 6 \end{pmatrix} + 0 \cdot (\cdots)det(B)=2⋅(−1)1+2det(0156)+4⋅(−1)2+2det(1136)+0⋅(⋯)
计算得:
det(B)=−2(0⋅6−5⋅1)+4(1⋅6−3⋅1)=−2(−5)+4(3)=10+12=22\det(B) = -2(0 \cdot 6 - 5 \cdot 1) + 4(1 \cdot 6 - 3 \cdot 1) = -2(-5) + 4(3) = 10 + 12 = 22 det(B)=−2(0⋅6−5⋅1)+4(1⋅6−3⋅1)=−2(−5)+4(3)=10+12=22
det(C)=2⋅4−1⋅3=5,det(C′)=det(3421)=3⋅1−4⋅2=−5=−det(C)\det(C) = 2 \cdot 4 - 1 \cdot 3 = 5, \quad \det(C') = \det\begin{pmatrix} 3 & 4 \\ 2 & 1 \end{pmatrix} = 3 \cdot 1 - 4 \cdot 2 = -5 = -\det(C) det(C)=2⋅4−1⋅3=5,det(C′)=det(3241)=3⋅1−4⋅2=−5=−det(C)
计算 det(D)=1(1⋅0−4⋅6)−2(0⋅0−4⋅5)+3(0⋅6−1⋅5)=−24+40−15=1≠0\det(D) = 1(1 \cdot 0 - 4 \cdot 6) - 2(0 \cdot 0 - 4 \cdot 5) + 3(0 \cdot 6 - 1 \cdot 5) = -24 + 40 - 15 = 1 \neq 0det(D)=1(1⋅0−4⋅6)−2(0⋅0−4⋅5)+3(0⋅6−1⋅5)=−24+40−15=1=0,故可逆。
逆矩阵为(计算过程略):
D−1=(−2418520−15−4−541)D^{-1} = \begin{pmatrix} -24 & 18 & 5 \\ 20 & -15 & -4 \\ -5 & 4 & 1 \end{pmatrix} D−1=−2420−518−1545−41