计算极限:limx→2(3x2−2x+5)\lim_{x \to 2} (3x^2 - 2x + 5) limx→2(3x2−2x+5)
计算极限:limx→1x2−4x+3x−1\lim_{x \to 1} \frac{x^2 - 4x + 3}{x - 1}limx→1x−1x2−4x+3
给定分段函数:f(x)={x3+2x<0exx≥0f(x) = \begin{cases} x^3 + 2 & x < 0 \\ e^x & x \geq 0 \end{cases}f(x)={x3+2exx<0x≥0
求 limx→0−f(x)\lim_{x \to 0^-} f(x)limx→0−f(x)和 limx→0+f(x)\lim_{x \to 0^+} f(x)limx→0+f(x)
计算:limx→∞2x3−5x3x3+x2+4\lim_{x \to \infty} \frac{2x^3 - 5x}{3x^3 + x^2 + 4} limx→∞3x3+x2+42x3−5x
证明:limx→0x2cos(1x)=0\lim_{x \to 0} x^2 \cos\left(\frac{1}{x}\right) = 0 limx→0x2cos(x1)=0
连续复利计算公式为:A=Plimn→∞(1+rn)ntA = P\lim_{n \to \infty} \left(1 + \frac{r}{n}\right)^{nt} A=Plimn→∞(1+nr)nt
试推导出 A=PertA = Pe^{rt}A=Pert
直接代入 x=2x=2x=2:3(2)2−2(2)+5=12−4+5=133(2)^2 - 2(2) + 5 = 12 - 4 + 5 = 13 3(2)2−2(2)+5=12−4+5=13
因式分解分子:(x−1)(x−3)x−1=x−3(x≠1)\frac{(x-1)(x-3)}{x-1} = x-3 \quad (x \ne 1)x−1(x−1)(x−3)=x−3(x=1)
极限值为:1−3=−21 - 3 = -21−3=−2
左极限:limx→0−(x3+2)=0+2=2\lim_{x \to 0^-} (x^3 + 2) = 0 + 2 = 2limx→0−(x3+2)=0+2=2
右极限:limx→0+ex=1\lim_{x \to 0^+} e^x = 1limx→0+ex=1
注:该函数在 x=0x=0x=0 处不连续
分子分母同除 x3x^3x3:
limx→∞2−5x23+1x+4x3=23\lim_{x \to \infty} \frac{2 - \frac{5}{x^2}}{3 + \frac{1}{x} + \frac{4}{x^3}} = \frac{2}{3} limx→∞3+x1+x342−x25=32
利用不等式:
−1≤cos(1x)≤1-1 \leq \cos\left(\frac{1}{x}\right) \leq 1−1≤cos(x1)≤1
两边乘以 x2x^2x2(x2>0x^2 > 0x2>0):
−x2≤x2cos(1x)≤x2-x^2 \leq x^2\cos\left(\frac{1}{x}\right) \leq x^2−x2≤x2cos(x1)≤x2
由于 limx→0(−x2)=limx→0x2=0\lim_{x \to 0} (-x^2) = \lim_{x \to 0} x^2 = 0limx→0(−x2)=limx→0x2=0,由夹逼定理得证
令 m=nrm = \frac{n}{r}m=rn,则:
limn→∞(1+1m)mrt=[limm→∞(1+1m)m]rt=ert\lim_{n \to \infty} \left(1 + \frac{1}{m}\right)^{mrt} = \left[\lim_{m \to \infty} \left(1 + \frac{1}{m}\right)^m\right]^{rt} = e^{rt}limn→∞(1+m1)mrt=[limm→∞(1+m1)m]rt=ert
最终得:
A=PertA = Pe^{rt}A=Pert
学习建议: