假设g(a)=g(b) g(a) = g(b)g(a)=g(b),则:a3+a=b3+b⇒a3−b3+a−b=0a^3 + a = b^3 + b \Rightarrow a^3 - b^3 + a - b = 0a3+a=b3+b⇒a3−b3+a−b=0
因式分解得:(a−b)(a2+ab+b2+1)=0(a-b)(a^2 + ab + b^2 + 1) = 0(a−b)(a2+ab+b2+1)=0
由于 a2+ab+b2+1≥34(a+b)2+1>0a^2 + ab + b^2 + 1 ≥ \frac{3}{4}(a+b)^2 + 1 > 0a2+ab+b2+1≥43(a+b)2+1>0
故必有 a=ba = ba=b,即 g(x)g(x)g(x) 是单射函数
分解分母:x2+4x+3=(x+1)(x+3)x^2+4x+3 = (x+1)(x+3)x2+4x+3=(x+1)(x+3)
设3x+5(x+1)(x+3)=Ax+1+Bx+3\frac{3x+5}{(x+1)(x+3)} = \frac{A}{x+1} + \frac{B}{x+3}(x+1)(x+3)3x+5=x+1A+x+3B
解得 A=1, B=2A=1,\ B=2A=1, B=2
积分得:∫(1x+1+2x+3)dx=ln∣x+1∣+2ln∣x+3∣+C\int \left( \frac{1}{x+1} + \frac{2}{x+3} \right) dx = \ln|x+1| + 2\ln|x+3| + C ∫(x+11+x+32)dx=ln∣x+1∣+2ln∣x+3∣+C答案:ln∣x+1∣+2ln∣x+3∣+C\boxed{\ln|x+1| + 2\ln|x+3| + C}ln∣x+1∣+2ln∣x+3∣+C
令 x=3sinθx = 3\sin\thetax=3sinθ,则 dx=3cosθdθdx = 3\cos\theta d\thetadx=3cosθdθ
原式变为:∫9−9sin2θ⋅3cosθdθ=9∫cos2θdθ\int \sqrt{9-9\sin^2\theta} \cdot 3\cos\theta d\theta = 9\int \cos^2\theta d\theta ∫9−9sin2θ⋅3cosθdθ=9∫cos2θdθ$用公式 cos2θ=1+cos2θ2\cos^2\theta = \frac{1+\cos2\theta}{2}cos2θ=21+cos2θ 积分得:92(θ+sin2θ2)+C\frac{9}{2}\left( \theta + \frac{\sin2\theta}{2} \right) + C 29(θ+2sin2θ)+C回代 θ=arcsin(x/3)\theta = \arcsin(x/3)θ=arcsin(x/3),最终得:答案:92arcsin(x3)+x29−x2+C\boxed{\dfrac{9}{2}\arcsin\left(\dfrac{x}{3}\right) + \dfrac{x}{2}\sqrt{9-x^2} + C}29arcsin(3x)+2x9−x2+C
令 u=exu = e^xu=ex,则du=exdxdu = e^x dxdu=exdx
原式变为:
∫u1+udu=∫(1−11+u)du=u−ln∣1+u∣+C\int \frac{u}{1+u} du = \int \left( 1 - \frac{1}{1+u} \right) du = u - \ln|1+u| + C ∫1+uudu=∫(1−1+u1)du=u−ln∣1+u∣+C
回代得:答案:ex−ln(1+ex)+C\boxed{e^x - \ln(1+e^x) + C}ex−ln(1+ex)+C
取对数:lny=2lnx+lnsinx+2x\ln y = 2\ln x + \ln\sin x + 2xlny=2lnx+lnsinx+2x
两边求导:y′y=2x+cotx+2\frac{y'}{y} = \frac{2}{x} + \cot x + 2 yy′=x2+cotx+2最终导数:答案:x2sinxe2x(2x+cotx+2)\boxed{x^2 \sin x e^{2x} \left( \dfrac{2}{x} + \cot x + 2 \right)}x2sinxe2x(x2+cotx+2)
取对数:lny=xlnsinx\ln y = x\ln\sin xlny=xlnsinx
隐函数求导:y′y=lnsinx+x⋅cosxsinx⇒y′=(sinx)x(lnsinx+xcotx)\frac{y'}{y} = \ln\sin x + x\cdot\frac{\cos x}{\sin x} \\ \Rightarrow y' = (\sin x)^x (\ln\sin x + x\cot x)yy′=lnsinx+x⋅sinxcosx⇒y′=(sinx)x(lnsinx+xcotx)答案:(sinx)x(lnsinx+xcotx)\boxed{(\sin x)^x (\ln\sin x + x\cot x)}(sinx)x(lnsinx+xcotx)
使用导数公式:ddxsinh−1(x2)=1(x2)2+1⋅2x=2xx4+1\frac{d}{dx} \sinh^{-1}(x^2) = \frac{1}{\sqrt{(x^2)^2 + 1}} \cdot 2x = \frac{2x}{\sqrt{x^4 + 1}} dxdsinh−1(x2)=(x2)2+11⋅2x=x4+12x答案:2xx4+1\boxed{\dfrac{2x}{\sqrt{x^4 + 1}}}x4+12x
学习建议: