🔴
入学要求
💯
能力测试
🛣️
课程安排
🕹️
研究资源

练习

练习题

  1. 计算定积分:

    02(3x2+2x1)dx \int_{0}^{2} (3x^2 + 2x - 1) dx 
  1. 使用分部积分法计算:

    xcosxdx \int x \cos x \, dx 
  1. 使用换元法计算:

    2xx2+4dx \int 2x \sqrt{x^2 + 4} \, dx 
  1. 计算广义积分:

    11x3dx \int_{1}^{\infty} \frac{1}{x^3} dx 
  1. 计算瑕积分:

    011xdx \int_{0}^{1} \frac{1}{\sqrt{x}} dx 
  1. 计算积分:

    e2xdx \int e^{2x} dx 

答案

第一题

02(3x2+2x1)dx=[x3+x2x]02=(8+42)(0)=10\begin{aligned} \int_{0}^{2} (3x^2 + 2x - 1) dx &= \left[ x^3 + x^2 - x \right]_0^2 \\ &= (8 + 4 - 2) - (0) = 10 \end{aligned}

第二题

u=xu = xdv=cosxdxdv = \cos x dx,则 du=dxdu = dxv=sinxv = \sin x

xcosxdx=xsinxsinxdx=xsinx+cosx+C\begin{aligned} \int x \cos x dx &= x \sin x - \int \sin x dx \\ &= x \sin x + \cos x + C \end{aligned}

第三题

u=x2+4u = x^2 + 4,则 du=2xdxdu = 2x dx

2xx2+4dx=udu=23u3/2+C=23(x2+4)3/2+C\begin{aligned} \int 2x \sqrt{x^2 + 4} dx &= \int \sqrt{u} \, du \\ &= \frac{2}{3} u^{3/2} + C \\ &= \frac{2}{3} (x^2 + 4)^{3/2} + C \end{aligned}

第四题

11x3dx=limt1tx3dx =limt[12x2]1t =limt(12t2+12)=12\begin{aligned} \int_{1}^{\infty} \frac{1}{x^3} dx &= \lim_{t \to \infty} \int_{1}^{t} x^{-3} dx \ &= \lim_{t \to \infty} \left[ -\frac{1}{2x^2} \right]^{t}_{1} \ &= \lim_{t \to \infty} \left( -\frac{1}{2t^2} + \frac{1}{2} \right) = \frac{1}{2} \end{aligned}

解释:

  1. 无穷积分的处理:当积分上限为无穷大时,我们引入一个有限值tt代替无穷大,然后计算tt趋向于无穷大时的极限
  1. 第一步是将11x3dx\int_{1}^{\infty} \frac{1}{x^3} dx转换为limt1tx3dx\lim_{t \to \infty} \int_{1}^{t} x^{-3} dx
  1. 第二步是计算x3dx\int x^{-3} dx的不定积分,即x3dx=12x2+C\int x^{-3} dx = -\frac{1}{2}x^{-2} + C(通过求导可验证)
  1. 第三步是代入积分上下限,得到[12x2]1t=12t2(12)=12t2+12[-\frac{1}{2x^2}]_{1}^{t} = -\frac{1}{2t^2} - (-\frac{1}{2})= -\frac{1}{2t^2} + \frac{1}{2}
  1. 最后,当$t$趋向无穷大时,1t2\frac{1}{t^2}趋向于0,所以极限值为12\frac{1}{2}

这种方法是处理无穷积分的标准做法,即将无穷区间转化为有限区间的极限

第五题

011xdx=limt0+t1x1/2dx=limt0+[2x]t1=limt0+(22t)=2\begin{aligned} \int_{0}^{1} \frac{1}{\sqrt{x}} dx &= \lim_{t \to 0^+} \int_{t}^{1} x^{-1/2} dx \\ &= \lim_{t \to 0^+} \left[ 2\sqrt{x} \right]_t^1 \\ &= \lim_{t \to 0^+} (2 - 2\sqrt{t}) = 2 \end{aligned}

解释:

  1. 这是一个存在瑕点的反常积分,因为在x=0x=0处函数1x\frac{1}{\sqrt{x}}发生了奇点(变为无穷大)
  1. 处理方法是引入一个趋近于0的正数tt(用t0+t \to 0^+表示tt从正值趋近于0),将积分区间变为[t,1][t,1]
  1. 计算步骤:
    • 首先将积分转化为limt0+t1x1/2dx\lim_{t \to 0^+} \int_{t}^{1} x^{-1/2} dx
    • 求不定积分:x1/2dx=1xdx=2x+C\int x^{-1/2} dx = \int \frac{1}{\sqrt{x}} dx = 2\sqrt{x} + C
    • 代入积分上下限:[2x]t1=212t=22t[2\sqrt{x}]_{t}^{1} = 2\sqrt{1} - 2\sqrt{t} = 2 - 2\sqrt{t}
    • 计算极限:当t0+t \to 0^+时,t0\sqrt{t} \to 0,因此limt0+(22t)=2\lim_{t \to 0^+}(2 - 2\sqrt{t}) = 2

这种方法是处理积分下限为奇点的反常积分的标准方法。由于结果是有限值2,所以我们说这个反常积分是收敛的

第六题

e2xdx=12e2x+C \int e^{2x} dx = \frac{1}{2} e^{2x} + C