🔴
入学要求
💯
能力测试
🛣️
课程安排
🕹️
研究资源

练习

练习题

  1. 用导数定义求f(x)=3x22xf(x)=3x^2-2xx=2x=2处的导数
  1. 求函数y=1xy = \frac{1}{\sqrt{x}}的一阶导数
  1. 计算y=cos(3x2)y = \cos(3x^2)的导数
  1. 求曲线y=3x+1y=\sqrt{3x+1}x=1x=1处的切线方程
  1. 隐函数求导:已知x3+y3=6xyx^3 + y^3 = 6xy,求dydx\frac{dy}{dx}
  1. f(x)=ln(2x3+1)f(x) = \ln(2x^3+1)的导数
  1. 某资产价格变化满足P(t)=100e0.05tP(t)=100e^{0.05t},求t=5时的瞬时变化率
  1. 求函数f(x)=x4f(x) = x^4的四阶导数
  1. 证明:若y=e2xy = e^{2x},则y4y=0y'' - 4y = 0
  1. 求椭圆x29+y24=1\frac{x^2}{9} + \frac{y^2}{4} = 1在点(2, 423\frac{4\sqrt{2}}{3})处的切线斜率

答案




  1. f(2)=limh03(2+h)22(2+h)(3×44)h=10f'(2) = \lim_{h \to 0} \frac{3(2+h)^2 -2(2+h) - (3×4 -4)}{h} = 10 



  1. y=x1/2dydx=12x3/2=12x3/2y = x^{-1/2} \Rightarrow \frac{dy}{dx} = -\frac{1}{2}x^{-3/2} = -\frac{1}{2x^{3/2}} 
  1. (链式法则):


    dydx=sin(3x2)×6x=6xsin(3x2)\frac{dy}{dx} = -\sin(3x^2) × 6x = -6x\sin(3x^2) 



  1. y=323x+1y(1)=34y' = \frac{3}{2\sqrt{3x+1}} \Rightarrow y'(1) = \frac{3}{4} \\ 切线方程:y=34(x1)+2=34x+54y = \frac{3}{4}(x-1) + 2 = \frac{3}{4}x + \frac{5}{4}




  1. 3x2+3y2y=6y+6xy整理得y=2yx2y22x3x^2 + 3y^2 y' = 6y + 6x y' \\ 整理得 y' = \frac{2y - x^2}{y^2 - 2x} 




  1. f(x)=6x22x3+1f'(x) = \frac{6x^2}{2x^3+1} 



  1. P(t)=100×0.05e0.05tP(5)=5e0.256.41(单位/时间)P'(t) = 100×0.05e^{0.05t} \\ P'(5) = 5e^{0.25} \approx 6.41 \text{(单位/时间)}




  1. f(4)(x)=d4dx4x4=4!=24f^{(4)}(x) = \frac{d^4}{dx^4}x^4 = 4! = 24 
  1. 证明


    y=2e2x, y=4e2xy4y=4e2x4e2x=0y' = 2e^{2x},\ y'' = 4e^{2x} \\ y'' -4y = 4e^{2x} -4e^{2x} = 0




  1. 2x9+2yy4=0y=4x9y代入点坐标:y=4×29×(42/3)=23\frac{2x}{9} + \frac{2y y'}{4} = 0 \Rightarrow y' = -\frac{4x}{9y} \\ 代入点坐标:y' = -\frac{4×2}{9×(4\sqrt{2}/3)} = -\frac{\sqrt{2}}{3}

学习建议

  1. 每天练习5-10道不同题型的导数计算
  1. 对错误题目建立错题本,分析错误类型
  1. 尝试用不同方法验证答案(如图形验证、数值估算等)