给定以下情景,请区分风险类型:
依赖数据:
companies = ['WMT', 'AMZN'] # 消费与科技行业代表
start_date = '2021-01-01'
end_date = '2022-12-31'
使用yfinance获取阿里巴巴(BABA)与沪深300指数(000300.SS)2021年数据:
# 需导入的库
import yfinance as yf
import statsmodels.api as sm
# 数据参数
symbols = ['BABA', '000300.SS']
start = '2021-01-01'
end = '2022-01-01'
risk_free_rate = 0.015 # 年化无风险利率
给定四只ETF的收益率数据:
import numpy as np
returns_matrix = np.array([
[0.02, 0.015, 0.018, ...], # SPY 500条日收益
[0.012, 0.01, 0.008, ...], # GLD
[0.025, 0.022, 0.019, ...], # QQQ
[0.008, 0.007, 0.006, ...] # TLT
]) # 完整数据需实际获取
使用Fama-French三因子分析苹果股票:
factor_data = yf.download(['^GSPC', 'IWM', 'EEM'], '2018-01-01', '2023-01-01')['Close']
aapl_returns = yf.download('AAPL', '2018-01-01', '2023-01-01')['Close'].pct_change().dropna()
# 因子构建参数:
size_threshold = 100 # 市值分界点(十亿美元)
value_threshold = 1.2 # 市净率分界点
对英伟达(NVDA)进行CAPM预测:
# 数据获取参数
target_stock = 'NVDA'
benchmark_index = '^NDX' # 纳斯达克100指数
train_period = ['2019-01-01', '2022-01-01']
test_period = ['2022-01-01', '2023-06-01']
构建包含以下资产的优化组合:
assets = ['VTI', 'GLD', 'TLT', 'VNQ']
constraints = {
'max_individual_weight': 0.4,
'min_bond_weight': 0.2,
'max_total_risk': 0.15
}
(注:所有习题需配合yfinance获取实时数据,部分题目存在多种解法)