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Sample Space

List (set) of all possible states of the world, Ω. The states are called
samples or elementary events.

List (set) of possible outcomes, Ω.

List must be:

Mutually exclusive
Collectively exhaustive
At the “right” granularity

The sample space Ω is either countable or uncountable.
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Probability

A discrete sample space Ω = (ωk)k∈I , where the set I is countable.

Definition (Probability)

A map P : Ω 7→ [0, 1] is called a probability on a discrete sample space Ω
if the following conditions are satisfied:

P (ωk) ≥ 0 for all k ∈ I∑
k∈I P (ωk) = 1
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Probability Measure

Let F = 2Ω be the set of all subsets of the sample space Ω.

F contains the empty set ∅ and Ω.

Any set A ∈ F is called an event (or a random event).

The set F is called the event space.

Probability is assigned to events.

Definition (Probability Measure)

A map P : F 7→ [0, 1] is called a probability measure on (Ω,F) if

For any sequence Ai ∈ F , i = 1, 2, . . . of events such that
Ai ∩Aj = ∅ for all i 6= j we have

P (∪∞i=1Ai) =
∞∑
i=1

P (Ai)

P (Ω) = 1
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Probability Measure

A probability P : Ω 7→ [0, 1] on a discrete sample space Ω uniquely
specifies probability of all events Ak = {ωk}.
P ({ωk}) = P (ωk) = pk.

Theorem

Let P : Ω 7→ [0, 1] be a probability on a discrete sample space Ω. Then the
unique probability measure on (Ω,F) generated by P satisfies for all
A ∈ F

P (A) =
∑
ωk∈A

P (ωk)
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Some properties of probability

If A ⊂ B, then P (A) ≤ P (B).

P (A ∪B) = P (A) + P (B)− P (A ∩B)

P (A ∪B) ≤ P (A) + P (B)

P (A ∪B ∪ C) = P (A) + P (Ac ∩B) + P (Ac ∩Bc ∩ C)
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Random Variables

A random variable associates a value (a number) to every possible
outcome.

It can take discrete or continuous values.

Definition (Discrete Random Variable)

A real-valued map X : Ω 7→ R on a discrete sample space Ω = (ωk)k∈I ,
where the set I is countable, is called a discrete random variable.

Notation

Random variable X Numerical value x

Different random variables can be defined on the same sample space.

A function of one or several random variables is also a r.v.
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Probability Mass Function (pmf)

Probability mass function (pmf) of a discrete random variable X.

It is the “probability law” or “probability distribution” of X.

If we fix some x, then “X = x” is an event.

Definition

pX(x) = P (X = x) = P ({ω ∈ Ω s.t. X(ω) = x})

Properties

pX(x) ≥ 0∑
x pX(x) = 1
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Expectation

Example: Play a game 1000 times. Random gain at each game is
described by

X =


1, with probability 2/10 ∼ 200

2, with probability 5/10 ∼ 500

4, with probability 3/10 ∼ 300

1 2 3 4
x

0.0

0.1

0.2

0.3

0.4

0.5

p
X
(x

)

“Average” gain:

1 · 200 + 2 · 500 + 4 · 300

1000
= 2.4

Definition: E[X] =
∑
x
xpX(x)
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Expectation

E[X] =
∑
x
xpX(x)

E(·) is called the expectation operator.

Average in a large number of independence experiments.

Expectation of a r.v. can be seen as the weighted average.

It is impossible to know the exact event to happen in the future and
thus expectation is useful in making decisions when the probabilities
of future outcomes are known.

Any random variable defined on a finite set Ω admits the expectation.

When the set Ω is countable but infinite, we need
∑
x
|x|pX(x) <∞

so that E[X] is well-defined.
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Expectation

Definition

The expectation (expected value or mean value) of a random variable
X on a discrete sample space Ω is given by

EP (X) = µ :=
∑
k∈I

X(ωk)P (ωk) =
∑
k∈I

xkpk

where P is a probability measure on Ω.

Definition

The expectation (expected value or mean value) of a discrete random
variable X with range RX = {x1, x2, x3, . . .} (finite or countably infinite)
is defined as

E(X) = µ :=
∑

xk∈RX

xkP (X = xk) =
∑

xk∈RX

xkPX(xk)
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Elementary Properties of Expectation

If X ≥ 0 then E[X] ≥ 0.

If a ≤ X ≤ b then a ≤ E[X] ≤ b.
If c is a constant, E[c] = c.
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Expected value rule, to compute E[g(X)]

If X is a r.v. and Y = g(X), then Y itself is a r.v.

Average over y:

E[Y ] =
∑
y

ypY (y)

Average over x:

Theorem (Law of the unconscious statistician (LOTUS))

E[Y ] = E[g(X)] =
∑
x

g(x)pX(x)

E[X2] =
∑
x
x2pX(x).

Caution: In general, E[g(X)] 6= g(E[X]).
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Linearity of Expectation

Theorem

E[aX + b] = aE[X] + b
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Variance

Variance is a measure of the spread of a random variable about its
mean and also a measure of uncertainty.

1 2 3 4 5 6 7 8 9 10
x

0.0

0.1

0.2

0.3

0.4

p
X
(x

)

R.v. X with µ = E[X]. Average distance from the mean?

E [X − µ] = E [X]− µ = µ− µ = 0
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Variance

Variance is a measure of the spread of a random variable about its
mean and also a measure of uncertainty.

R.v. X with µ = E[X]. Average distance from the mean?

E [X − µ] = E [X]− µ = µ− µ = 0

Average of the squared distance from the mean.

Definition (Variance)

The variance of a random variable X on a discrete sample space Ω is
defined as

V ar(X) = σ2 = E P [(X − µ)2],

where P is a probability measure on Ω.
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Variance

V ar(X) = σ2 = E [(X − µ)2]

To calculate, use the expected value rule, E[g(X)] =
∑

x g(x)pX(x)

V ar(X) = E [g(X)] =
∑
x

(x− µ)2pX(x)

Variance is non-negative: V ar(X) = σ2 ≥ 0.

V ar(X) = 0 iff X is deterministic.

Definition (Standard Deviation)

The standard deviation of a random variable X is defined as

SD(X) = σX =
√
V ar(X)
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Properties of the variance

Theorem

For a random variable X and real numbers a and b,

V ar(aX + b) = a2V ar(X)

Notation µ = E[X]

Let Y = X + b, γ = E[Y ] = µ+ b.

V ar(Y ) = E[(Y−γ)2] = E[(X+b−(µ+b))2] = E[(X−µ)2] = V ar(X)

Let Y = aX, γ = E[Y ] = aµ

V ar(Y ) = E[(aX − aµ)2] = E[a2(X − µ)2]

= a2E[(X − µ)2] = a2V ar(X)
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Properties of the variance

Computational formula for the variance

V ar(X) = E(X2)− [E(X)]2

V ar(X) = E[(X − µ)2]

= E[X2 − 2µX + µ2]

= E[X2]− 2µE[X] + µ2

= E[X2]− (E[X])2
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Independence and Expectation

In general: E [g(X,Y )] 6= g(E [X],E [Y ])

Exceptions:
E [aX + b] = aE [X] + b E [X + Y + Z] = E [X] + E [Y ] + E [Z]

Theorem

If X,Y are independent: E [X,Y ] = E [X]E [Y ],
g(X) and h(Y ) are also independent: E [g(X), h(Y )] = E [g(X)]E [h(Y )]
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Independence and Variances

Always true: Var (aX) = a2Var (X) Var (X + a) = Var (X)

In general: Var (X + Y ) 6= Var (X) + Var (Y )

However

Theorem

If X,Y are independent: Var (X + Y ) = Var (X) + Var (Y )

Proof.

Assume E [X] = E [Y ] = 0 E [XY ] = E [X]E [Y ] = 0.

Var (X + Y ) = E [(X + Y )2] = E [X2 + 2XY + Y 2]

= E [X2] + 2E [XY ] + E [Y 2] = Var (X) + V ar(Y )
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Bernoulli Random Variables

A Bernoulli r.v. X takes two possible values, usually 0 and 1,
modeling random experiments that have two possible outcomes (e.g.,
“success” and “failure”).

e.g., tossing a coin. The outcome is either Head or Tail.
e.g., taking an exam. The result is either Pass or Fail.
e.g., classifying images. An image is either Cat or Non-cat.
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Bernoulli Random Variables

Definition

A random variable X is a Bernoulli random variable with parameter
p ∈ [0, 1], written as X ∼ Bernoulli(p) if its PMF is given by

PX(x) =

{
p, for x = 1

1− p, for x = 0.

0 1
x
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p
X
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)

1− p

p
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Bernoulli & Indicator Random Variables

A Bernoulli r.v. X with parameter p ∈ [0, 1] can also be described as

X =

{
1 with probability p

0 with probability 1− p

A Bernoulli r.v. is associated with a certain event A. If event A
occurs, then X = 1; otherwise, X = 0.

Bernoulli r.v. is also called the indicator random variable of an event.

Definition

The indicator random variable of an event A is defined by

IA =

{
1 if the event A occurs

0 otherwise

The indicator r.v. for an event A has Bernoulli distribution with parameter
p = P (IA = 1) = PIA(1) = P (A). We can write IA ∼ Bernoulli((P (A)).
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Discrete Uniform Random Variables

Parameters: integer a, b; a ≤ b
Experiment: Pick one of a, a+ 1, . . . , b at random; all equally likely.

Sample space: {a, a+ 1, . . . , b}
Random variable X : X(ω) = ω

b− a+ 1 possible values, PX(x) = 1/(b− a+ 1) for each value.

Model of: complete ignorance.

a a+ 1 b
x

1
b− a+ 1

p
X
(x

)
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Binomial Random Variables

Parameters: Probability p ∈ [0, 1], positive integer n.

Experiment: e.g., n independent tosses of a coin with P (Head) = p

Sample space: Set of sequences of H and T of length n

Random variable X : number of Heads observed.

Model of: number of successes in a given number of independent
trials.

Examples

PX(2) = P (X = 2)

= P (HHT) + P (HTH) + P (THH)

= 3p2(1− p)

=

(
3

2

)
p2(1− p)
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Binomial Random Variables
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Binomial Random Variables

Let Ω = {0, 1, 2, . . . , n} be the sample space and let X be the
number of successes in n independent trials where p is the probability
of success in a single Bernoulli trial.

The probability measure P is called the binomial distribution if

PX(k) =

(
n

k

)
pk(1− p)n−k for k = 0, 1, . . . , n

where (
n

k

)
=

n!

k!(n− k)!

Then
E[X] = np and V ar(X) = np(1− p)
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Geometric Random Variables

Parameters: Probability p ∈ (0, 1].
Experiment: infinitely many independent tosses of a coin;
P (Head) = p.
Sample space: Set of infinite sequences of H and T.
Random variable X : number of tosses until the first Head.
Model of: waiting times, number of trials until a success.

PX(k) = P (X = k) = P (T . . .T︸ ︷︷ ︸
k−1

H) = (1− p)k−1p
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p
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p= 0.2
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Geometric Random Variables

Let Ω = {1, 2, 3, . . .} be the sample space and X be the number of
independent trials to achieve the first success.

Let p stand for the probability of a success in a single trial.

The probability measure P is called the geometric distribution if

PX(k) = (1− p)k−1p for k = 1, 2, 3 . . .

Then

E[X] =
1

p
and V ar(X) =

1− p
p2
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Continuous Random Variables

Definition

A random variable X on the sample space Ω is said to have a continuous
distribution if there exists a real-valued function f such that

f(x) ≥ 0,∫ ∞
−∞

f(x) dx = 1,

and for all real numbers a < b:

P (a ≤ X ≤ b) =

∫ b

a
f(x) dx.

Then f : R 7→ R+ is called the probability density function (PDF) of a
continuous random variable X.
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Probability Density Function (PDF)
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P (a ≤ X ≤ b) =
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x: a≤x≤b
pX(x)

pX(x) ≥ 0∑
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pX(x) = 1
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Probability density function (PDF)

P (a ≤ X ≤ b) =

∫ b

a
fX(x) dx

fX(x) ≥ 0∫ ∞
−∞

fX(x) dx = 1
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Probability Density Function (PDF)
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Probability Density Function (PDF)

a a+
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Probability Density Function (PDF)

P (a ≤ X ≤ b) =

∫ b

a
fX(x) dx

δ > 0, small

P (a ≤ X ≤ a+ δ) ≈ fX(a).δ

P (X = a) = 0

Just like, a single point has zero length.

But, a set of lots of points has a positive length.
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Standard Normal (Gaussian) Random Variable N(0, 1)
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Standard Normal (Gaussian) Random Variable N(0, 1)
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Standard Normal (Gaussian) Random Variable N(0, 1)
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General Normal (Gaussian) Random Variable N(µ, σ2)
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General Normal (Gaussian) Random Variable N(µ, σ2)
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General Normal (Gaussian) Random Variable N(µ, σ2)
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General Normal (Gaussian) Random Variable N(µ, σ2)
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Smaller σ, narrower PDF.

Let Y = aX + b N ∼ N(µ, σ2)

Then, E [Y ] = aX + b Var (Y ) = a2σ2 (always true)

But also, Y ∼ N(aµ+ b, a2σ2)
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Example

A bag contains 3 balls, each ball is either red or blue.

The number of blue balls θ can be 0, 1, 2, 3.

Choose 4 balls randomly with replacement.

Random variables X1, X2, X3, X4 are defined as

Xi =

{
1, if the i-th chosen ball is blue

0, if the i-th chosen ball is red

After doing the experiment, the following values for Xi’s are
observed: x1 = 1, x2 = 0, x3 = 1, x4 = 1.

Note that Xi’s are i.i.d. (independent and identically distributed) and
Xi ∼ Bernoulli( θ3). For which value of θ is the probability of the
observed sample is the largest?
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Example

PXi(x) =

{
θ
3 , for x = 1

1− θ
3 , for x = 0

Xi’s are independent, the joint PMF of X1, X2, X3, X4 can be written

PX1X2X3X4(x1, x2, x3, x4) = PX1(x1)PX2(x2)PX3(x3)PX4(x4)

PX1X2X3X4(1, 0, 1, 1) =
θ

3
·
(

1− θ

3

)
· θ

3
· θ

3
=

(
θ

3

)3(
1− θ

3

)
θ PX1X2X3X4(1, 0, 1, 1; θ)

0 0

1 0.0247

2 0.0988

3 0

The observed data is most likely to occur for θ = 2.
We may choose θ̂ = 2 as our estimate of θ.
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Maximum Likelihood Estimation (MLE)

Definition

Let X1, X2, . . . , Xn be a random sample from a distribution with a
parameter θ.
Given that we have observed X1 = x1, X2 = x2, . . . , Xn = xn, a
maximum likelihood estimate of θ, denoted as θ̂ML, is a value of θ that
maximizes the likelihood function

L(x1, x2, . . . , xn; θ)

A maximum likelihood estimator (MLE) of the parameter θ, denoted as
Θ̂ML, is a random variable Θ̂ML = Θ̂(X1, X2, . . . , Xn) whose values
X1 = x1, X2 = x2, . . . , Xn = xn is given by θ̂ML.
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