STATS 100C: Linear Models Spring 2017

Lecture 13: May 16

Lecturer: Arash Amini Scribe: Eric Chuu

1.1 Quadratic Forms

Let y € R™ and A be a symmetric n X n matrix. Then

Qly) =y'Ay = ZZAljyzyj (1.1)

i=1 j=1

In the simplest case, consider A = I,,. Then Q(y) = y'I,y = |ly||*. Since y ~ N(0,1,,), then we also know
that ly|* ~ X3

Lemma. Suppose P € R"*™ ig a projection matrix with rank » < n. Then,
2

(a) y ~ N(0,1,), and y'Py = | Py|” ~ x7

(b) Let x ~ N(0, P). Then ||z|* ~ x2

Proof.

(a) Since P is a projection matrix, it is symmetric and idempotent, so there exists a spectral decomposition,
P = UAU’, where U is orthogonal and A is diagonal with the eigenvalues of P on the diagonal. Let z = U'y.
Then Cov(z) = U'L,U =U'U = I, and it follows that z ~ N(0, ;). Then

|Py|* = (Py) (Py) =y'P'Py = y'Py (1.2)
y’Py:y'UAU’y:z’Az:Zz?)\i :sz)\i :szwxz (1.3)
i=1 i=0 =1

Note that the summation of 22); to n and r equivalent because rank(P) = r, so the remaining n —r diagonal
entries are 0, and the result follows.

(b) Suppose x ~ N (0, P). We can write x = Py and verify that the distribution holds. Then Cov(Py) =
PI,P' = PP’ = P by symmetric and idempotence, so x ~ N (0, P). It remains to show that x'x ~ 2. Note
that we can write x'x as follows

x'x = (Py)'(Py) = |Py|?
which can be seen from (1.3), to follow x2. The result follows. O

Example. Recall the usual regression setup/assumptions. Then e ~ N(0,0?(I—H), and € ~ N (0, (I—H)),
where I — H is a projection matrix with rank n — p — 1. Then applying the previous lemma, we have

1S ~xems (1.4)
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Cochran’s Theorem. Suppose y ~ N(0,I,,) and let Q = Zle Qi, where Q1, ..., Q are quadratic forms
iny;, i.e, Q; =yiA;y; for i =1,2,... k. Further, assume that

() @~ 2 and Qi 2 i= 1.k~ 1
(b) Qr > 0.

Then, Q1,...,Qx are independent and Qj, ~ ng, with rp, =7 — Zf:_ll ;.

1.2 Statistical Inference

We want to test a general linear hypothesis. Consider the following regression model,

y = Bol + Bix1 + Bax2 + € (1.5)
and the null hypothesis:
=2
by {B =28
Bo =0

Note that this set of constraints can be written in matrix- vector form as follows:

b0 ofemael

Using this formulation, we have the following hypothesis test:

H()ZA,BZO
H,: AB#0

The null model has fewer effective parameters than does the original unrestricted model. Taking 81 = 28, =:
v, we can write the model under the null as a function of one parameter,

x
y = Bix1 + Poxo + € = 209x1 + fox2 = (X1 + 72) +e (1.6)

We can extend this idea to a general linear hypothesis with ¢ constraints, where ¢ < p + 1. We assume that
the matrix A, which contains the constraints is full rank, so rank(A) = ¢q. More specifically, we have

y=XBte—pte (1.7)
and we want to test
HO : A,@ = 0
H,: AB#0
where
A e Rt g e RPTUX1 ¥ ¢ grx(p+l) (1.8)

Recall L(X) :=Im(X) = {X3: B € RP*!}. Then the mean vector p of the unrestricted model is in L(X).
We can then define the restricted image,

La(X)={XB:BcR AB=0}={XB:B c R B cker(A)} (1.9)
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Clearly, L4(X) C L(X). From these definitions, we can say L(X) is the image of RP*! under the map X,
B — X3. Similarly, L4(X) is the image of ker(A) under the map X, 8 — X3. Since dim(L(X)) =p+ 1.

Claim: Suppose dim(L(X)) =p+ 1. Then dim(La (X)) =p+1—q.

Proof: Suppose that X is full rank (p + 1), and V is a linear subspace of RP*1. Then XV has the same
dimension of V. Using this result, we know know that ker(A) has the same dimension of L 4(X),

dim (L4(X)) = dim (ker(A))
=p+1—dim(Im(4"))
=p+l—gq
by the full-rank assumption. O

Using this formulation of the image and the restricted image, we can consider hypothesis tests of the form:

Ho: p e La(X)
Hy:pu¢ La(X),pe L(X)
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