STATS 100C: Linear Models

Lecture 13: May 16

Lecturer: Arash Amini

Scribe: Eric Chuu

Spring 2017

1.1 Quadratic Forms

Let $\mathbf{y} \in \mathbb{R}^n$ and A be a symmetric $n \times n$ matrix. Then

$$Q(\mathbf{y}) = \mathbf{y}' A \mathbf{y} = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} y_i y_j$$
(1.1)

In the simplest case, consider $A = I_n$. Then $Q(\mathbf{y}) = \mathbf{y}' I_n \mathbf{y} = \|\mathbf{y}\|^2$. Since $\mathbf{y} \sim N(0, I_n)$, then we also know that $\|\mathbf{y}\|^2 \sim \chi_n^2$.

Lemma. Suppose $P \in \mathbb{R}^{n \times n}$ is a projection matrix with rank $r \leq n$. Then, (a) $\mathbf{y} \sim N(0, I_n)$, and $\mathbf{y}' P \mathbf{y} = \|P \mathbf{y}\|^2 \sim \chi_r^2$ (b) Let $\mathbf{x} \sim N(0, P)$. Then $\|x\|^2 \sim \chi_r^2$

Proof.

(a) Since P is a projection matrix, it is symmetric and idempotent, so there exists a spectral decomposition, $P = U\Lambda U'$, where U is orthogonal and Λ is diagonal with the eigenvalues of P on the diagonal. Let $\mathbf{z} = U'\mathbf{y}$. Then $\text{Cov}(\mathbf{z}) = U'I_n U = U'U = I_n$, and it follows that $\mathbf{z} \sim N(0, I_n)$. Then

$$\|P\mathbf{y}\|^{2} = (P\mathbf{y})'(P\mathbf{y}) = \mathbf{y}'P'P\mathbf{y} = \mathbf{y}'P\mathbf{y}$$
(1.2)

$$\mathbf{y}' P \mathbf{y} = \mathbf{y}' U \Lambda U' \mathbf{y} = \mathbf{z}' \Lambda \mathbf{z} = \sum_{i=1}^{n} z_i^2 \lambda_i = \sum_{i=0}^{r} z_i^2 \lambda_i = \sum_{i=1}^{r} z_i^2 \sim \chi_r^2$$
(1.3)

Note that the summation of $z_i^2 \lambda_i$ to n and r equivalent because rank(P) = r, so the remaining n - r diagonal entries are 0, and the result follows.

(b) Suppose $\mathbf{x} \sim N(\mathbf{0}, P)$. We can write $\mathbf{x} = P\mathbf{y}$ and verify that the distribution holds. Then $\operatorname{Cov}(P\mathbf{y}) = PI_nP' = PP' = P$ by symmetric and idempotence, so $\mathbf{x} \sim N(\mathbf{0}, P)$. It remains to show that $\mathbf{x}'\mathbf{x} \sim \chi_r^2$. Note that we can write $\mathbf{x}'\mathbf{x}$ as follows

$$\mathbf{x}'\mathbf{x} = (P\mathbf{y})'(P\mathbf{y}) = \|P\mathbf{y}\|^2$$

which can be seen from (1.3), to follow χ_r^2 . The result follows.

Example. Recall the usual regression setup/assumptions. Then $\mathbf{e} \sim N(\mathbf{0}, \sigma^2(I-H))$, and $\frac{\mathbf{e}}{\sigma} \sim N(\mathbf{0}, (I-H))$, where I - H is a projection matrix with rank n - p - 1. Then applying the previous lemma, we have

$$\left\|\frac{\mathbf{e}}{\sigma}\right\|^2 \sim \chi^2_{n-p-1} \tag{1.4}$$

Cochran's Theorem. Suppose $\mathbf{y} \sim N(\mathbf{0}, I_n)$ and let $Q = \sum_{i=1}^k Q_i$, where Q_1, \ldots, Q_k are quadratic forms in y_i , i.e., $Q_i = \mathbf{y}'_i A_i \mathbf{y}_i$ for $i = 1, 2, \ldots, k$. Further, assume that

(a) $Q \sim \chi_r^2$ and $Q_i \sim \chi_{r_i}^2, i = 1, \dots, k-1$ (b) $Q_k \ge 0$.

Then, Q_1, \ldots, Q_k are independent and $Q_k \sim \chi^2_{r_k}$, with $r_k = r - \sum_{i=1}^{k-1} r_i$.

1.2 Statistical Inference

We want to test a general linear hypothesis. Consider the following regression model,

$$\mathbf{y} = \beta_0 \mathbf{1} + \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 + \boldsymbol{\varepsilon} \tag{1.5}$$

and the null hypothesis:

$$H_0: \begin{cases} \beta_1 = 2\beta_2\\ \beta_0 = 0 \end{cases}$$

Note that this set of constraints can be written in matrix- vector form as follows:

$$\begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & 0 \end{bmatrix} \boldsymbol{\beta} = A \boldsymbol{\beta} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Using this formulation, we have the following hypothesis test:

$$\begin{cases} H_0 : A\boldsymbol{\beta} = \mathbf{0} \\ H_a : A\boldsymbol{\beta} \neq \mathbf{0} \end{cases}$$

The null model has fewer effective parameters than does the original unrestricted model. Taking $\beta_1 = 2\beta_2 =: \gamma$, we can write the model under the null as a function of one parameter,

$$\mathbf{y} = \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 + \boldsymbol{\varepsilon} = 2\beta_2 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 = \gamma \left(\mathbf{x}_1 + \frac{\mathbf{x}_2}{2} \right) + \boldsymbol{\varepsilon}$$
(1.6)

We can extend this idea to a general linear hypothesis with q constraints, where $q \le p+1$. We assume that the matrix A, which contains the constraints is full rank, so rank(A) = q. More specifically, we have

$$y = X\beta + \varepsilon = \mu + \varepsilon \tag{1.7}$$

and we want to test

$$\begin{cases} H_0 : A\boldsymbol{\beta} = \mathbf{0} \\ H_a : A\boldsymbol{\beta} \neq \mathbf{0} \end{cases}$$

where

$$A \in \mathbb{R}^{q \times (q+1)}, \quad \beta \in \mathbb{R}^{(p+1) \times 1}, \quad X \in \mathbb{R}^{n \times (p+1)}$$
(1.8)

Recall $L(X) := \text{Im}(X) = \{X\beta : \beta \in \mathbb{R}^{p+1}\}$. Then the mean vector μ of the unrestricted model is in L(X). We can then define the restricted image,

$$L_A(X) = \{ X\boldsymbol{\beta} : \boldsymbol{\beta} \in \mathbb{R}^{p+1}, A\boldsymbol{\beta} = \mathbf{0} \} = \{ X\boldsymbol{\beta} : \boldsymbol{\beta} \in \mathbb{R}^{p+1}, \boldsymbol{\beta} \in \ker(A) \}$$
(1.9)

Clearly, $L_A(X) \subseteq L(X)$. From these definitions, we can say L(X) is the image of \mathbb{R}^{p+1} under the map X, $\beta \mapsto X\beta$. Similarly, $L_A(X)$ is the image of ker(A) under the map X, $\beta \mapsto X\beta$. Since dim(L(X)) = p + 1.

Claim: Suppose dim(L(X)) = p + 1. Then dim $(L_A(X)) = p + 1 - q$.

Proof: Suppose that X is full rank (p + 1), and V is a linear subspace of \mathbb{R}^{p+1} . Then XV has the same dimension of V. Using this result, we know that ker(A) has the same dimension of $L_A(X)$,

$$\dim (L_A(X)) = \dim (\ker(A))$$
$$= p + 1 - \dim(\operatorname{Im}(A'))$$
$$= p + 1 - q$$

by the full-rank assumption.

Using this formulation of the image and the restricted image, we can consider hypothesis tests of the form:

$$\begin{cases} H_0 : \mu \in L_A(X) \\ H_a : \mu \notin L_A(X), \mu \in L(X) \end{cases}$$