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1.1 Quadratic Forms

Let y ∈ Rn and A be a symmetric n× n matrix. Then

Q(y) = y′Ay =

n∑
i=1

n∑
j=1

Aijyiyj (1.1)

In the simplest case, consider A = In. Then Q(y) = y′Iny = ||y||2. Since y ∼ N(0, In), then we also know

that ||y||2 ∼ χ2
n.

Lemma. Suppose P ∈ Rn×n is a projection matrix with rank r ≤ n. Then,
(a) y ∼ N(0, In), and y′Py = ||Py||2 ∼ χ2

r

(b) Let x ∼ N(0, P ). Then ||x||2 ∼ χ2
r

Proof.
(a) Since P is a projection matrix, it is symmetric and idempotent, so there exists a spectral decomposition,
P = UΛU ′, where U is orthogonal and Λ is diagonal with the eigenvalues of P on the diagonal. Let z = U ′y.
Then Cov(z) = U ′InU = U ′U = In, and it follows that z ∼ N(0, In). Then

||Py||2 = (Py)′(Py) = y′P ′Py = y′Py (1.2)

y′Py = y′UΛU ′y = z′Λz =

n∑
i=1

z2i λi =

r∑
i=0

z2i λi =

r∑
i=1

z2i ∼ χ2
r (1.3)

Note that the summation of z2i λi to n and r equivalent because rank(P ) = r, so the remaining n−r diagonal
entries are 0, and the result follows.

(b) Suppose x ∼ N(0, P ). We can write x = Py and verify that the distribution holds. Then Cov(Py) =
PInP

′ = PP ′ = P by symmetric and idempotence, so x ∼ N(0, P ). It remains to show that x′x ∼ χ2
r. Note

that we can write x′x as follows

x′x = (Py)′(Py) = ||Py||2

which can be seen from (1.3), to follow χ2
r. The result follows.

Example. Recall the usual regression setup/assumptions. Then e ∼ N(0, σ2(I−H), and e
σ ∼ N(0, (I−H)),

where I −H is a projection matrix with rank n− p− 1. Then applying the previous lemma, we have∣∣∣∣∣∣ e
σ

∣∣∣∣∣∣2 ∼ χ2
n−p−1 (1.4)
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Cochran’s Theorem. Suppose y ∼ N(0, In) and let Q =
∑k
i=1Qi, where Q1, . . . , Qk are quadratic forms

in yi, i.e., Qi = y′iAiyi for i = 1, 2, . . . , k. Further, assume that

(a) Q ∼ χ2
r and Qi ∼ χ2

ri , i = 1, . . . , k − 1
(b) Qk ≥ 0.

Then, Q1, . . . , Qk are independent and Qk ∼ χ2
rk

, with rk = r −
∑k−1
i=1 ri.

1.2 Statistical Inference

We want to test a general linear hypothesis. Consider the following regression model,

y = β01 + β1x1 + β2x2 + ε (1.5)

and the null hypothesis:

H0 :

{
β1 = 2β2

β0 = 0

Note that this set of constraints can be written in matrix- vector form as follows:[
0 1 −2
1 0 0

]
β = Aβ =

[
0
0

]
Using this formulation, we have the following hypothesis test:{

H0 : Aβ = 0

Ha : Aβ 6= 0

The null model has fewer effective parameters than does the original unrestricted model. Taking β1 = 2β2 =:
γ, we can write the model under the null as a function of one parameter,

y = β1x1 + β2x2 + ε = 2β2x1 + β2x2 = γ
(
x1 +

x2

2

)
+ ε (1.6)

We can extend this idea to a general linear hypothesis with q constraints, where q ≤ p+ 1. We assume that
the matrix A, which contains the constraints is full rank, so rank(A) = q. More specifically, we have

y = Xβ + ε = µ+ ε (1.7)

and we want to test {
H0 : Aβ = 0

Ha : Aβ 6= 0

where
A ∈ Rq×(q+1), β ∈ R(p+1)×1, X ∈ Rn×(p+1) (1.8)

Recall L(X) := Im(X) = {Xβ : β ∈ Rp+1}. Then the mean vector µ of the unrestricted model is in L(X).
We can then define the restricted image,

LA(X) = {Xβ : β ∈ Rp+1, Aβ = 0} = {Xβ : β ∈ Rp+1,β ∈ ker(A)} (1.9)
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Clearly, LA(X) ⊆ L(X). From these definitions, we can say L(X) is the image of Rp+1 under the map X,
β 7→ Xβ. Similarly, LA(X) is the image of ker(A) under the map X, β 7→ Xβ. Since dim(L(X)) = p+ 1.

Claim: Suppose dim(L(X)) = p+ 1. Then dim(LA(X)) = p+ 1− q.

Proof : Suppose that X is full rank (p + 1), and V is a linear subspace of Rp+1. Then XV has the same
dimension of V . Using this result, we know know that ker(A) has the same dimension of LA(X),

dim (LA(X)) = dim (ker(A))

= p+ 1− dim(Im(A′))

= p+ 1− q

by the full-rank assumption.

Using this formulation of the image and the restricted image, we can consider hypothesis tests of the form:

{
H0 : µ ∈ LA(X)

Ha : µ /∈ LA(X), µ ∈ L(X)
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