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1.1 Recap

Recall the following definitions:

X =

 1 x1 x2 . . . xp

 , β =


β0
β1
...
βp

 , A = (X ′X)−1X ′, H = X(X ′X)−1X ′

Then we can define the following:

y = Xβ + ε, y ∼ N(µ, σ2In), ε ∼ N(0, σ2In),

where µ = Xβ. We also consider β̂, and µ̂, where

β̂ ∼ N(β, σ2(X ′X)−1), µ̂ = Xβ̂ = Hy,

where µ̂ is the projection of y onto the image of X. Note that µ̂ is an unbiased estimate of µ, and the
covariance can be calculated:

Cov(µ̂) = HCov(y)H ′ = σ2HH ′ = σ2H

1.2 Residuals

We can define the residual as follows,

e = y − µ̂ = y −Hy = (I −H)y

where e can be seen as the projection of y onto the orthogonal complement of the image of X. Since the
residual as a function of y, we can easily calculate its distribution:

E(e) = (I −H)E(y) = (I −H)µ = 0, since µ ∈ Im(X)

Cov(e) = (I −H)Cov(y)(I −H)′ = σ2(I −H)(I −H)′ = σ2(I −H)

e ∼ N(0, σ2(I −H))

We are interested in the joint behavior of
(
β̂, e

)′
. We know that they are marginally normal, but what

about jointly? [
β̂
e

]
=

[
Ay

(I −H)y

]
=

[
A

I −H

]
y⇒ E

([
β̂
e

])
=

[
β
0

]
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Before calculating the covariance matrix, consider the matrix product AH. Since A′ = X(X ′X)−1, it follows
that Im(A′) ⊆ Im(X). Thus, applying the projection matrix to A′ just gives back A′, i.e.,

HA′ = A′ ⇔ AH = A (1.1)

Cov

([
β̂
e

])
=

[
A

I −H

]
Cov(y)

[
A′ (I −H)′

]
= σ2

[
A

I −H

] [
A′ (I −H)′

]
= σ2

[
AA′ A(I −H)′

(I −H)A′ (I −H)

]
= σ2

[
(X ′X)−1 0

0 (I −H)

]

where the last equality holds by applying the result in equation (1.1) to the off diagonal matrix elements.

The distribution of
(
β̂, e

)′
is then given by

[
β̂
e

]
∼ N

([
β
0

]
,

[
σ2(X ′X)−1 0

0 σ2(I −H)

])
(1.2)

Since
(
β̂, e

)′
is multivariate normal, then uncorrelatedness is equivalent to independence, so its joint distri-

bution given in (1.2) implies that β̂ is independent of e. More generally, any function of β̂ is independent of

any function of e. For example, the sample variance is independent of β̂,

s2 =
||e||2

n− p− 1
⊥ β̂

Recall that |e|
2

σ2 ∼ χ2
n−p−1. The expectation of a chi-square random variable is equal to the degrees of

freedom. Then,

E

(
||e||2

σ2

)
= n− p− 1

E(s2) = E

(
||e||2

n− p− 1

)
=

σ2

n− p− 1
E

(
||e||2

σ2

)
=

σ2

n− p− 1
(n− p− 1) = σ2

so s2 is an unbiased estimate for σ2. We can still calculate the expectation of s2 without knowing the

distribution ||e||
2

σ2 . We use the following claim:
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Claim 1: If A ∈ Rn×p is symmetric and has the spectral decomposition A = UΛU ′, then tr(A) =
∑n
i=1 λi,

where λi is the i-th eigenvalue of A.

E
(
||e||2

)
= E

(
n∑
i=1

e2i

)
=

n∑
i=1

E(e2i ) =

n∑
i=1

Var(ei) =

n∑
i=1

[Cov(e)]ii

= tr (Cov(e))

= tr
(
σ2(I −H)

)
= σ2

n∑
i=1

λi, (Claim 1)

= σ2 · rank(I −H)

= σ2 · Im(I −H)

= σ2 · dim
(
[Im(X)]⊥

)
= σ2(n− p− 1)

It follows that E
(
s2
)

= σ2.

Proof of Claim 1: Consider the trace of the spectral decomposition given in the claim. We then use the
circular property of the trace:

tr(A) = tr (UΛU ′) = tr (U ′UΛ) = tr(Λ) =

n∑
i=1

λi


