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1.1 Multivariate Normal Distribution

A random vector

y =


y1
y2
...
yn


has multivariate normal distribution with parameters

µ =


µ1

µ2

...
µn

 , Σ ∈ Rn×n

if it has the density

fY (y) =
1

(2π)n/2|Σ|1/2
exp

[
−1

2
(y − µ)T Σ−1(y − µ)

]
(1.1)

where Σ is invertible.

Example. Suppose y1, y2, . . . , yn
iid∼ N(0, 1). Then in vector form, the joint density function can be written

as

fY (y) =

n∏
i=1

fYi(yi) =

n∏
i=1

1√
2π

exp

(
−y

2
i

2

)
=

1

(2π)n/2
exp

[
−1

2

n∑
i=1

y2i

]
=

1

(2π)n/2
exp

[
−1

2
yTy

]
We can see that µ = 0,Σ = In, so y ∼ N(0, In).

1.1.1 Properties of the Multivariate Normal Distribution

Let y ∼ N(µ,Σ).

(1) Any affine transformation of y, u = Ay+b, where A,b are nonrandom, follows a multivariate
normal distribution, with

u ∼
(
Aµ+ b, AΣAT

)
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(2) The marginal distributions are normal. suppose we can partition the vector y into two sub-vectors,
y1,y2,

y =

[
y1

y2

]
, y1 ∈ Rp,y2 ∈ Rn−p

Then y1,y2 follow a multivariate normal distribution. We can obtain their respective distributions by noting
that

y1 =
[
Ip 0

] [y1

y2

]
Aµ =

[
Ip 0

] [µ1

µ2

]
= µ1

AΣAT =
[
Ip 0

] [Σ11 Σ12

Σ21 Σ22

] [
Ip
0

]

(3) Conditional Distributions are Multivariate Normal
Using the same partition as in property (2), then the conditional distribution

y1|y2 ∼ N
(
µ1|2,Σ1|2

)
µ1|2 = µ1 + Σ12Σ−122 (y2 − µ2)

Σ1|2 = Σ11 − Σ12Σ−122 Σ21

(4) Uncorrelatedness is equivalent to Independence. In general, independence implies uncorrelated-
ness, but the converse does not necessarily hold. For multivariate normal, the two notions are equivalent.
Thus, if we have [

y1

y2

]
∼
([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
and Σ12 = 0, then y1 ⊥ y2.

Let x ∼ (µ,Σ). Note that since Σ is positive semi-definite, we can define Σ
1
2 , where Σ

1
2 Σ

1
2 = Σ. The

decorrelated version of x is

z = Σ−
1
2 x

Cov(z) = Σ−
1
2 Cov(x)Σ−

1
2 = I

⇒ z ∼ N
(

Σ−
1
2µ, I

)
Thus, we can standardize x by shifting:

z∗ = Σ−
1
2 (x− µ)

⇒ z∗ ∼ N (0, I)

1.2 Multiple Linear Regression

Multiple Linear Regression is used to model a functional relationship between a response variable and one
or more explanatory/predictor variables. The model is linear in the parameters:

Y = β0 + β1x1 + · · ·βpxp + ε (1.2)
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where
µ := β0 + β1x1 + · · ·βpxp

is the deterministic component, and ε is random. Some assumptions that we make are:

1. The covariances are assumed to be fixed

2. ε is random variable, associated with noise and unexplained variation, with E(ε) = 0.

⇒ E(Y ) = E(µ+ ε) = µ+ E(ε) = µ

We can consider the xi, yi as a collection of data/observations of independent samples:

{yi, xi1, xi2, . . . , xip : i = 1, . . . , n}

The β’s remain the same, so we have

yi = β0 + β1xi1 + · · ·βpxip + εi, i = 1, . . . , n (1.3)

= β0 +

p∑
j=1

βjxij + εi, i = 1, . . . , n (1.4)

= Xβ + ε (1.5)

where

X =

 x1 x2 . . . xp

 , β =


β1
β2
...
βp




