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Problem 3.1

Let = (x1, x2, . . . , xn) ∼ N(0, In) be a MVN random vector in Rn.

(a) Let U ∈ Rn×n be an orthogonal matrix, and find the distribution of U ′x.

Since U ′x is a linear transformation of x, U ′x is also MVN.

E (U ′x) = U ′E(x) = U ′0 = 0

Var(U ′x) = U ′Var(′x)U = U ′IU = In

⇒ U ′x ∼ N(0, In)

Let y ∼ N(0,Σ) be a MVN random vector in Rn. Let Σ = UΛU ′ be the spectral decomposition of Σ.

(b) Is the claim that the diagonal elements of Λ are nonnegative true?

Σ is a covariance matrix, so Σ is positive semi-definite, which implies that its eigenvalues are nonnegative.

Since Λ is a diagonal matrix with the eigenvalues of Σ on the diagonal, then we conclude that the diagonal

elements of Λ are nonnegative.

(c) Let z = U ′y. Find the distribution of z.

Since z is a linear transformation of a MVN vector, z is also a MVN vector.

E(z) = U ′E(y) = U ′0 = 0

Var(z) = U ′Var(y)U = U ′ΣU = U ′(UΛU ′)U = Λ

⇒ z ∼ N(0,Λ)

(d) Since z is MVN, then uncorrelatedness is equivalent to independence. Since Cov(z) = Λ, which is a

diagonal matrix, then Cov(zi, zj) = 0,∀i 6= j, and we conclude that the components of z are independent.

(e) Since Λ is diagonal, Cov(zi, zj) = 0,∀i 6= j. Thus, Var(zi) = Λii, the i-th element on the diagonal.

(f) Let a = (a1, . . . an) ∈ Rn be a fixed, non-random vector. Find the distribution of a′z.

Since a′z is a linear transformation of z, which is MVN, then a′z is also MVN.

E(a′z) = a′E(z) = a′0 = 0

Var(a′z) = a′Var(z)a = a′Λa

⇒ a′z ∼ N(0,a′Λa)
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(g) Suppose Λii > 0,∀i. Specify an a such that Var(a′z) = 1.

Var(a′z) = 1⇔ aΛa = 1⇔
n∑
i=1

a2
iΛ

2
ii = 1, ai =

1
√
n
√

Λii

Thus, one choice for the vector a is:

1√
n


1√
Λ11
1√
Λ22

...
1√
Λnn


(h) Let u1 ∈ Rn be the first column of U . Find the joint distribution of (a′z,u′1y) ∈ R2.

Note that z = U ′y⇒ y = Uz, since U is orthogonal. Then we can write the vector (a′z,u′1y) as[
a′z

u′1y

]
=

[
a′z

u′1Uz

]
=

[
a′z

(1, 0, . . . , 0)z

]
=

[
a1 a2 . . . an
1 0 . . . 0

]
y

The second equality holds because U is orthogonal. Since the transformations are linear, (a′z,u′1y) is MVN.

E

([
a′z

u′1y

])
=

[
a′E(z)

u′1E(y)

]
= 0

Var

([
a′z

u′1y

])
=

[
a1 a2 . . . an
1 0 . . . 0

]
Var(z)


a1 1

a2 0
...

...

an 0

 =

[∑n
i=1 a

2
iΛii a1Λ11

a1Λ11 Λ11

]

[
a′z

u′1y

]
∼ N

(
0,

[∑n
i=1 a

2
iΛii a1Λ11

a1Λ11 Λ11

])

2



Eric Chuu Stats 100C (Professor Arash Amini): Homework #3

Problem 3.2

Let H ∈ Rn×n be symmetric and idempotent, hence a projection matrix. Let x ∼ N(0, In).

Solution

(a) Let σ > 0 be a positive number. Find the distribution of σx.

Since σx is a scalar multiple of a MVN random vector, then σx is also MVN.

E(σx) = σE(x) = 0

Var(σx) = σ2Var(x) = σ2In

⇒ σx ∼ N(0, σ2In)

(b) Let u = Hx,v = (I −H)x. Find the joint distribution (u,v)′

First note that since H is symmetric idempotent, we have the following three results:

H(I −H)′ = H −HH ′ = H −HH = H −H = 0

(I −H)H ′ = H ′ −HH ′ = H −HH = H −H = 0

(I −H)(I −H)′ = I −H −H ′ +HH ′ = I − 2H +H = I −H

We can write the vector (u,v)′ as a product of a block matrix and x, and since (u,v)′ can be written as a

linear transformation a MVN random vector, we know that (u,v)′ is also MVN.[
u

v

]
=

[
H

(I −H)

]
x, E

([
u

v

])
=

[
H

(I −H)

]
E(x) = 0

Cov

([
u

v

])
=

[
H

(I −H)

]
In
[
H ′ (I −H)′

]
=

[
H H(I −H)′

(I −H)H ′ (I −H)(I −H)′

]
=

[
H 0

0 (I −H)

]

[
u

v

]
∼ N

(
0,

[
H 0

0 (I −H)

])

(c) Is the claim that u and v independent true?

Since (u,v) is a MVN random vector, uncorrelatedness is equivalent to independence. The distribution

found in part (b) that the covariance matrix is block-diagonal. Thus, u and v are uncorrelated, and thus

independent.

(d) Let µ ∈ Im(H). Show that Hµ = µ.

Since µ ∈ Im(H), there exists some y ∈ Rn such that µ = Hy. Then we can left multiply by H to get:

Hµ = H(Hy) = Hy = µ, since H is idempotent.

(e) Assume that 1 ∈ Im(H). Find the distribution of 1′Hx.

Since 1′Hx is a linear transformation of a MVN random vector, it is also normally distributed.

E(1′Hx) = 1′HE(x) = 0

Var(1′Hx) = 1′HVar(x)(1′H)′ = 1′HH ′1 = 1′H1

By part (d), we know that since 1 ∈ Im(H), H1 = 1, so Var(1′Hx) = 1′1 = n, and we conclude that

1′hx ∼ N(0, n)
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Problem 3.10

The regression model for the hardness data is given as:

y = β0 + β1x1 + ε

The 14× 2 matrix X and the 14× 1 vector of responses y are given by

X =



1 30

1 30

1 30

1 30

1 40

1 40

1 40

1 50

1 50

1 50

1 60

1 60

1 60

1 60



, y =



55.8

59.1

54.8

54.6

43.1

42.2

45.2

31.6

30.9

30.8

17.5

20.5

17.2

16.9



, X ′X =

[
14 630

630 30300

]
, (X ′X)

−1
=

[
1.1099 −0.0231

−0.0231 0.0005

]

Then the expression for the least squares estimates in β̂ = (X ′X)
−1
X ′y is given by

β̂ =

[
1.1099 −0.0231

−0.0231 0.0005

]
X ′y =

[
94.13

−1.27

]
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Problem 3.11

Consider a trivariate normal distribution

y =

y1

y2

y3

 , E[y] = µy =

2

6

4

 , Cov(y) =

1 0 1

0 2 −1

1 −1 3


(a) Determine the marginal bivariate distribution of (y1, y2)′.

(b) Determine the conditional bivariate distribution of (y1, y2)′, given that y3 = 5.

Solution

(a) We write (y1, y2)′ as a linear transformation of y and then take expectation and variance,[
y1

y2

]
=

[
1 0 0

0 1 0

]
y

E

([
y1

y2

])
=

[
1 0 0

0 1 0

]
µy =

[
1 0 0

0 1 0

]2

6

4

 =

[
2

6

]

Cov

([
y1

y2

])
=

[
1 0 0

0 1 0

]
Cov(y)

1 0

0 1

0 0

 =

[
1 0 0

0 1 0

]1 0 1

0 2 −1

1 −1 3

1 0

0 1

0 0

 =

[
1 0

0 2

]

[
y1

y2

]
∼ N

([
2

6

]
,

[
1 0

0 2

])
(b) First note that the Cov(y) can be written as the following block matrix

Cov(y) =

 1 0 1

0 2 −1

1− 1 3

 =

[
Σ?? Σ?3
Σ3? Σ33

]

The conditional bivariate distribution of y? = (y1, y2)′ given y3 = 5 is also MVN, and it can be calculated

as follows:

µ?|3 = µ? + Σ?3Σ33−1(y3µ3) =

[
2

6

]
+

[
1

−1

]
· 1

3
(5− 4) =

[
7/3

17/3

]

Σ?|3 = Σ?? − Σ?3Σ−1
33 Σ′?3 =

[
1 0

0 2

]
−
[

1

−1

]
· 1

3
·
[
1 −1

]
=

[
1 0

0 2

]
−
[

1/3 −1/3

−1/3 1/3

]
=

[
2/3 1/3

1/3 5/3

]

y?|y3 = 5 ∼ N
([

7/3

17/3

]
,

[
2/3 1/3

1/3 5/3

])
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Problem 3.14

Suppose that the covariance matrix of a vector y is σ2In. Find the covariance matrix of

(a) Ay

(b) Hy

(c) (I −H)y

(d)

[
A

I −H

]
y

H = X (X ′X)
−1
X ′, A = (X ′X)

−1
X ′

Solution

Recall that H, (I −H) are symmetric and idempotent.

(a) Cov(Ay) = ACov(y)A′ = Aσ2IA′ = σ2AA′ = σ2(X ′X)−1X ′X(X ′X)−1 = σ2(X ′X)−1

(b) Cov(Hy) = Hσ2IH ′ = σ2HH ′ = σ2HH = σ2H

(c) Cov((I −H)y) = (I −H)σ2I(I −H)′ = σ2(I −H)(I −H)′ = σ2(I −H)(I −H) = σ2(I −H)

(d) Recall from the Problem 3.13 (Homework 1) that A(I −H) = (I −H)A′ = 0.

Cov

([
A

I −H

]
y

)
=

[
A

I −H

]
Cov (y)

[
A′ (I −H)′

]
= σ2

[
A

I −H

] [
A′ (I −H)′

]
= σ2

[
A

I −H

] [
A′ (I −H)

]
= σ2

[
(X ′X)−1 A(I −H)

(I −H)A′ (I −H)(1−H)′

]

Cov

([
A

I −H

]
y

)
= σ2

[
(X ′X)−1 0

0 (I −H)

]
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Problem 4.5 After fitting the regression model,

y = β0 + β1x1 + β2x2 + β3x3 + ε (1)

on 15 cases, it is found that the mean squared error s2 = 3, and

(X ′X)
−1


0.5 0.3 0.2 0.6

0.3 6.0 0.5 0.4

0.2 0.5 0.2 0.7

0.6 0.4 0.7 3.0


Find:

(a) The estimate of Var(β̂1).

(b) The estimate of Cov(β̂1, β̂3)

(c) The estimate of Cor(β̂1, β̂3)

(d) The estimate of Var(β̂1 − β̂3)

Solution

(a) We know that β̂ ∼ N
(
β, σ2(X ′X)−1

)
, and since s2 is an unbiased estimator for σ2, then we can calculate

Var(β̂),

Var (β) = s2 (X ′X)
−1

= 3 ·


0.5 0.3 0.2 0.6

0.3 6.0 0.5 0.4

0.2 0.5 0.2 0.7

0.6 0.4 0.7 3.0

 =


1.50 0.90 0.60 1.80

0.90 18.0 1.50 1.20

0.60 1.50 0.60 2.10

1.80 1.20 2.10 9.00


Then Var(β̂1) can be read off of the covariance matrix calculated above. Var(β̂1) = 18.0.

(b) Cov(β̂1, β̂3) =
[
Cov(β̂)

]
13

= 1.20

(c) Cor(β̂1, β̂3) = Cov(β̂1,β̂3)√
Var(β̂1)

√
Var(β̂3)

= 1.20√
18·9 = 0.094

(d) Var(β̂1 − β̂3) = Var(β̂1) + Var(β̂3)− 2Cov(β̂1, β̂3) = 18.0 + 9.0− 2 · 1.20 = 24.6
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