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Problem 1

Prove the following properties about covariance.

1. Cov(X,X) = Var(X)

2. Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y )

3. Cov(X,Y ) = E(XY ) + E(X)E(Y )

4. Cov(aX + b, cY + d) = acCov(Y,Z)

5. Cov(X + Y,Z) = Cov(X,Z) + Cov(Y,Z)

6. Cor(X,Y ) = Cor(aX + b, cY + d), if ac > 0

7. Let X ∼ Unif[−1, 1] and Y = X2. Show that Cov(X,Y ) = 0

8. If (X,Y ) ∼ f(x, y) = fX(x)fY (y). Then Cov(X,Y ) = 0

Solution

(1) Cov(X,X) = E[(X − E[X])(X − E[X]] = E[(X − E[X])2] = Var(X)

(2) Let µX = E[X], µY = E[Y ], µX+Y = E[X] + E[Y ]. Then, using linearity of expectation, we have

Var(X + Y ) = E[((X + Y )− µX+Y )2]

= E[((X − µX) + (Y − µy))2]

= E[(X − µX)2 + (Y − µY )2 + 2(X − µX)(Y − µY )]

= E[(X − µX)2] + E[(Y − µY )2] + 2E[(X − µX)(Y − µY )]

= Var(X) + Var(Y ) + 2Cov(X,Y )

(3) Continuing with the variable definitions from (2) and using linearity of expectation, we have

Cov(X,Y ) = E[(X − µX)(Y − µY )]

= E[XY −XµY − Y µX + µXµY ]

= E[XY ]− E[X]E[Y ]− E[Y ]E[X] + E[X]E[Y ]

= E[XY ]− E[X]E[Y ]
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(4)

Cov(aX + b, cY + d) = E[(aX + b− E[aX + b])(cY + d− E[cY + d])]

= E[(aX + b− aE[X]− b)(cY + d− cE[X]− d)]

= E[a(X − E[x]) · c(Y − E[Y ])]

= ac · E[(X − E[X])(Y − E[Y ])]

= ac · Cov(X,Y )

(5)

Cov(X + Y,Z) = E[(X + Y = E[X + Y ])(Z − E[Z])]

= E[(X − E[X] + Y − E[Y ])(Z − E[Z])]

= E[(X − E[X])(Z − E[Z]) + (Y − E[Y ])(Z − E[Z])]

= E[(X − E[X])(Z − E[Z])] + E[(Y − E[Y ])(Z − E[Z])]

= Cov(X,Z) + Cov(Y,Z)

(6) If ac > 0, then we can use the definition of correlation and part (4) to express the right hand side as

Cor(aX + b, cY + d) =
Cov(aX + b, cY + d√

Var(aX + b)
√

Var(cY + d)
=

ac · Cov(X,Y )

ac ·
√
V ar(X)

√
Var(Y )

Cov(X,Y )√
Var(X)

√
Var(Y )

= Cor(X,Y )

(7)

Cov(X,Y ) = Cov(X,X2) = E[(X − E[X])(X2 − E[X2])]

= E
(
X3 −XE[X2]−X2E[X] + E[X]E[X2]

)
= E[X3]− E[X]E[X2]− E[X2]E[X] + E[X]E[X2]

= E[X3]− E[X]E[X2]

=

∫ 1

−1

1

2
x3dx−

∫ 1

−1

1

2
xdx ·

∫ 1

−1

1

2
x2dx

= 0− 0 · 1

3

= 0

(8) With Fubini’s Theorem, we can perform the following swaps on the integrals

Cov(X,Y ) = E[XY ]− E[X]E[Y ]

=

∫ ∫
xyf(x, y)dxdy −

∫
xfX(x)dx

∫
yfY (y)dy

=

∫ ∫
xyfX(x)fY (y)dxdy −

∫
xfX(x)

∫
yfY (y)dy

=

∫
xfX(x)dx

∫
yfY (y)dy −

∫
xfX(x)

∫
yfY (y)dy

= 0

All 8 properties have thus been proven.
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Problem 2

For two random variables X and Y , suppose we want to predict Y by α + βX by minimizing R(α, β) =

E[(Y − αβX)2]. Let ε = Y − α− βX.

1. Take derivative of R with respect to α, show that E[ε] = 0. Assume that we can exchange the derivative

and the expectation.

2. Take the derivative of R with respect to β, show that Cov(X, ε) = 0

3. Based on (1) and (2), solve for the optimal α and β based on µX = E[X], µY = E[Y ],Cov(X,Y ), σ2
X =

Var(X), σ2
Y = Var(Y ).

4. Express β in terms of ρ = Cor(X,Y ), as well as σx and σY .

5. Prove Var(Y ) = Var(α+ βX) + Var(ε). Let R2 = Var(α+ βX)/Var(Y ). Show that R2 = ρ2

Solution

(1) Taking the derivative of R with respect to α and setting it equal to 0, we get

∂R(α, β)

∂α
= −2E[Y − α− βX] = −2E[ε] = 0 =⇒ E[ε] = 0

(2) Taking the derivative of R with respect to β, we get

∂R(α, β)

∂β
= −2E[(Y − α− βX) ·X] = −2E[εX] = 0

This implies that E[εX] = 0, and if we then consider the covariance of X and ε, then we have

Cov(X, ε) = E[εX]− E[X]E[ε] = 0− 0 · E[X] = 0

(3) Using part (1), we see that E[Y − α− βX] = 0, so

E[Y ]− α− βE[X] = µy − α− βµX = 0

Solving for the optimal α, we get α = βµX + µy, where the value of β can be optimally chosen by solving

for β given in part (2). Since Cov(ε,X) = 0, we can expand and solve for β:

0 = Cov(ε,X) = Cov(Y − α− βX,X) = Cov(Y,X)− βCov(X,X)

⇒ Cov(X,Y ) = βCov(X,X)

⇒ β =
Cov(X,Y )

Cov(X,X)
=

Cov(X,Y )

Var(X)
=

Cov(X,Y )

σ2
X

(4) Since ρ = Cor(X,Y ) = Cov(X,Y )/σXσY , then Cov(X,Y ) = ρσXσY , and we can express β as found in

the previous part in terms of ρ, σX , σY as follows

β =
Cov(X,Y )

σ2
X

=
ρσXσY
σ2
X

= ρ
σY
σX

(5) We use property (2) and (5) from problem 1 to show the following:

Var(Y ) = Var(α+ βX + ε) = Var(α+ βX) + Var(ε) + 2Cov(α+ βX, ε)

= Var(α+ βX) + Var(ε) + 2 · β2Cov(X, ε)

= Var(α+ βX) + Var(ε) + 2 · 0
= Var(α+ βX) + Var(ε)

Then we use the value of β as calculated in part (4) to show that

R2 =
Var(α+ βX)

Var(Y )
=
β2Var(X)

Var(Y )
= ρ2

Var(Y )

Var(X)
· Var(X)

Var(Y )
= 1
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Problem 3

Define the terms and prove the following:

1. E[E[Y |X]] = E[Y ]

2. Var(Y ) = Var(E(Y |X)) + E[Var(Y |X)]

3. Cov(X,Y ) = E[Cov(X,Y |Z)] + Cov(E[X|Z].E[Y |Z]])

Solution

Let X,Y be random variables, where Y ∼ fY |X(y|x), and we define

h(X) := E[Y |X = x] =

∫
yfY |X(y|x)dy (1)

(1) Using the definition of expectation, conditional probability, and transformation defined in (1) above, we

can calculate E[E[Y |X]],

E[E[Y |X]] = E[h(X)] =

∫
h(x)fX(x)dx

=

∫ [∫
yfY |X(y|x)dy

]
fX(x)dx

=

∫ ∫
yf(x, y)dxdy

= E[Y ]

(2) First recall that conditional variance is defined as

Var(Y |X = x) = E[(Y − h(X))2|X = x] (2)

Define ε := Y − h(X). Consider

E[ε|X] = E[Y − h(X)|X] = E[Y − E[Y |X]|X] (3)

= E[Y |X]− E[Y |X] (4)

= 0 (5)

where the equality in (5) follows from the result proven in part (1). Then for any function g defined on X,

we can again use the result from part (1) to calculate the following,

E[εg(X)] = E[E[εg(X)|X]] = E[g(X)E[ε|X]] = E[g(X) · 0] = 0 (6)

Using the conclusions from (6) and(7), we then have

Cov(ε, h(X)) = E[εh(X)]− E[ε]E[h(X)] = 0− 0 · E[h(X)] = 0 (7)

Then the variance of Y can be expressed as

Var(Y ) = Var(h(X) + ε) = Var(h(X)) + Var(ε) + 2Cov(h(X), ε) (8)

= Var(h(X)) + Var(ε) (9)

= Var(E[Y |X]) + E[(ε− E[ε])2] (10)

= Var(E[Y |X]) + E[ε2] (11)

= Var(E[Y |X]) + E[(Y − h(X))2] (12)

= Var(E[Y |X]) + E[E[(Y − h(X))2|X]] (13)

= Var(E[Y |X]) + E[Var(Y |X)] (14)

where equality (10) follows from (8), equality (12) follows from (6), equality (14) follows from the result of

part (1), and equality (15) follows from the definition of conditional variance.
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(3) Let X,Y, Z be random variables, and define h(Z) = E[X|Z] and g(Z) = E[Y |Z]. Recall the definition of

conditional covariance

Cov(X,Y |Z) = E[(X − E[X|Z])(Y − E[Y |Z])|Z] (15)

In addition, we define ε := X − h(Z) and δ = Y − g(Z). Consider the following intermediate calculations:

E[ε] = E[X − h(Z)] = E[E[(X − h(Z)|Z)]] (16)

= E[E[X|Z]− E[h(Z)]] (17)

= E[E[X|Z]− E[X|Z]] (18)

= E[0] (19)

= 0 (20)

By a similar calculation, E[δ] = 0. For any function g defined on Z,

E[εg(Z)] = E[E[εg(Z)|Z]] (21)

= E[g(Z)E[ε|Z]] (22)

= E[g(Z) · 0] (23)

= 0 (24)

By a similar calculation, we also have that for any function g defined on Z, E[δg(Z)] = 0. We can then

calculate the covariance of ε and δ,

Cov(ε, δ) = Cov(X − h(Z), Y − g(Z)) (25)

= E[(X − h(Z)− E[X] + E[h(Z)])(Y − g(Z)− E[Y ] + E[g(Z)])] (26)

= E[(X − h(Z))(Y − g(Z))] (27)

= E[E[(X − h(Z))(Y − g(Z))|Z]] (28)

= E[Cov(X,Y |Z)] (29)

note that the equality in (29) follows from Adam Law, as proved in part (1). Then, if we consider the the

conclusions in lines (21), (25), and (30), we can express the covariance of X,Y as

Cov(X,Y ) = Cov(h(Z) + ε, g(Z) + δ) (30)

= Cov(h(Z), g(Z) + δ) + Cov(ε, g(Z) + δ) (31)

= Cov(h(Z), g(Z)) + Cov(h(Z), δ) + Cov(ε, g(Z)) + Cov(ε, δ) (32)

= Cov(h(Z), g(Z)) + Cov(ε, δ) (33)

= Cov(E[X|Z],E[Y |Z]) + E[Cov(X,Y |Z)] (34)

All three properties have thus been proven.
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Problem 4

Let Z ∼ N(µ, σ2). Let X = Z + ε1 and Y = Z + ε2, where ε1, ε2 follow N(0, τ2) independently, and both

are independent of Z. Calculate E[X],Var[X], and Cov(X,Y ) using the formulas in Problem 1.

Solution

Since Z is normally distributed with mean µ, and ε1 is normally distributed with mean 0, then we can use

linearity of expectation to find the expectation of X

E[X] = E[Z + ε1] = E[Z] + E[ε1] = µ+ 0 = µ

Using property (2) from Problem 1, we can find the variance of X,

Var(X) = Var(Z + ε1)

= Var(Z) + Var(ε1) + 2Cov(Z, ε1)

= σ + τ + 0

= σ + τ

where Cov(Z, ε1) = 0 because ε1 is independent of Z. Then we can apply property (6) twice to find the

covariance of X,Y ,

Cov(X,Y ) = Cov(Z + ε1, Z + ε2)

= Cov(Z,Z + ε2) + Cov(ε1, Z + ε2)

= Cov(Z,Z) + Cov(Z, ε2) + Cov(ε1, Z) + Cov(ε1, ε2)

= Var(Z) + 0 + 0 + 0

= Var(Z)

since Z is independent of both ε1, ε2, and ε1 is independent of ε2.
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Problem 5

For a random person, let X be a whether he or she smokes or not, let Z be the background variable, and

let Y be the health of this person. Is E[Y |X = 1]− E[Y |X = 0] equal to E[E[Y |X = 0, Z]], where the outer

expectation is with respect to the marginal distribution of Z? When are the two equal to each other?

Solution
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