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Problem 1

For X ~ Binom(n,p), let u = np and 02 = np(1 — p). Let Z = (X — p)/o. Prove that P(Z € [a,b]) —
f; f(2)dz, where f(z) is the density of the standard normal distribution.

Solution
For general p € (0,1), let ¢ =1 —p. Let k = p + zo = np + z/npq = np + d. Neglecting O(1/n) terms, we
have
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Taking the log of both sides and using the Taylor expansion of log(1 + &) = § — §2/2 + O(6%), we have
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Note also that in equation (3), since k = np +d and n — k = n — np — d = ng — d, we can then express the

first term of the product as
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Since k = np + d, then as n — co, we have £ = — p, s0 equation (12) gives us
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Combining our conclusions from equations (3), (11), and (13), we have the following
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Taking Az = \/npq, equation (14) becomes
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27
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Since we are calculating the probability of Z € [a, b], we consider the following quantities
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Then we can calculate the probability that the point falls within this region

P(Z € [a,b]) = P(X € [ac + p,bo + p])
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which is exactly what we wanted to show.
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Problem 2

Calculate the expectation and variance of the Poisson random variable based on the probability mass function.

Solution

Let X be a Poisson random variable with parameter . Then the PMF of X is given by:
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We can then use the PMF to calculate the expectation of X,

Px(k)=e k=0,1,... (21)
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Then the variance of X is given by

Var(X) = E[X?] —E[X]? = A2+ A= A2 =\




