
MATH 170A: Homework #1

Professor P.F. Rodriguez

Assignment: 1, 2, 3; Textbook Chapter 1: 2, 5, 6, 7, 8, 9, 10

January 12, 2016

Eric Chuu

UID: 604406828

1



Eric Chuu MATH 170A (Professor P.F. Rodriguez ): Homework #1 Problem 1

Problem 1

Solution

We first write A ∪ B as a disjoint union, so that when we take the probability, we can make use of the

additivity axiom, as seen in (1) below.

A ∪B = A ∪ (Ac ∩B)

P(A ∪B) = P(A ∪ (Ac ∩B))

= P(A) + P(Ac ∩B)

(1)

By the non-negativity axiom, P(Ac ∩B) ≥ 0, so it’s clear that P(A) ≤ P(A ∪B).

Consider A = (A ∩ Bc) ∪ (A ∩ B), which is a disjoint union. Then taking the probability and applying the

additivity axiom, we get:
P(A) = P((Bc ∩A) ∪ (A ∩B))

= P(Bc ∩A) + P(A ∩B)
(2)

By non-negativity, P(Bc ∩A) ≥ 0, so P(A ∩B) ≤ P(A). Thus, by transitivity, we get

P(A ∩B) ≤ P(A) ≤ P(A ∪B).

�

Problem 2

Solution

We’re given that Ω = {1, 2, 3, 4, 5, 6}, and that P({1, 2, 3, 4}) = 0.6,P({4}) = 0.2,P({3, 4, 5, 6}) = 0.9. From

this, we can have:

P({1}) = P({2}) = 0.05

P({3}) = 0.3

P({4}) = P({5}) = P({6}) = 0.2

Alternatively, we can have a probability law with the following:

P({1}) = P({2}) = 0.05

P({3}) = 0.3

P({4}) = 0.2

P({5}) = 0.1

P({6}) = 0.3

Both of these satisfy the information given, so it’s not enough to determine a unique probability law. �

Problem 3

Solution

We’re given that there are 3 model types, 2 engine types, 2 transmission types, and 5 colors. If the car is

hybrid, then it must also have an automatic transmission. Thus, the number of ways to configure a normal

car is given by: 3∗1∗2∗5 = 30, while the number of ways to configure a hybrid car is given by 3∗1∗1∗5 = 15,

resulting in a total of 45 ways to configure a car. �
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Eric Chuu MATH 170A (Professor P.F. Rodriguez ): Homework #1 Problem 4

Problem 4

Let A,B be two sets.

(a) Show that Ac = (Ac ∩B) ∪ (Ac ∩Bc) and Bc = (A ∩Bc) ∪ (Ac ∩Bc).

Solution

For any sets X,Y we can write X = (X ∩ Y ) ∪ (X ∩ Y c), a union of two disjoint set. If we then let

X = Ac, Y = B, then

Ac = (Ac ∩B) ∪ (Ac ∩Bc),

which yields the desired result. By interchanging the variables and letting X = Bc, Y = A, we get

Bc = (Bc ∩A) ∪ (Bc ∩Ac)

= (A ∩Bc) ∪ (Ac ∩Bc),

which proves the second equality. �

(b) Show that: (A ∩B)c = (Ac ∩B) ∪ (Ac ∩Bc) ∪ (A ∩Bc).

Solution

By De Morgan’s law and applying the results of part (a), we can write,

(A ∩B)c = Ac ∪Bc

= (Ac ∩B) ∪ (Ac ∩Bc) ∪ (A ∩Bc) ∪ (Ac ∩Bc)

= (Ac ∩B) ∪ (Ac ∩Bc) ∪ (A ∩Bc)

We can leave off the recurring Ac ∩Bc because they represent the same set. �

(c) Consider rolling a fair six-sided die. Let A be the set of outcomes where the roll is an odd number. Let

B be the set of outcomes where the roll is less than 4. Calculate the sets on both sides of the equality in

part (b), and verify that the equality holds.

Solution

We consider the quantities separately:

(A ∩B)c = {set of outcomes where roll is not (1 or 3)}
(Ac ∩B) = {set of outcomes that are 2}

(Ac ∩Bc) = {even numbers ≥ 4}
(A ∩Bc) = {odd numbers ≥ 4}

Looking at the right hand side of the equality from part (b), we see that

(Ac ∩B) ∪ (Ac ∩Bc) ∪ (A ∩Bc) = {2} ∪ {4, 6} ∪ {5}
= {2, 4, 5, 6}
= {set of outcomes where roll is not (1 or 3)}
= LHS

thus satisfying the equality from part (b). �
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Eric Chuu MATH 170A (Professor P.F. Rodriguez ): Homework #1 Problem 5

Problem 5

Out of the students in a class, 60% are geniuses, 70% love chocolate, and 40% fall into both categories.

Determine the probability that a randomly selected student is neither a genius nor a chocolate lover.

Solution

Let A = genius, B = chocolate lover, so P(A) = 0.6,P(B) = 0.7,P(A ∩ B) = 0.4. Then (Ac ∩ Bc) =

{event in which student is neither genius nor chocolate lover}. Taking the probability and applying De Mor-

gan’s law, we get
P(Ac ∩Bc) = P(A ∪B)c

= 1−P(A ∪B)

= 1− (P(A) + P(B)−P(A ∩B))

= 1− (0.6 + 0.7− 0.4)

= 0.1.

Thus, the probability that the randomly selected student is neither a genius nor a chocolate lover is 0.1 �

Problem 6

A six-sided die is loaded in a way that each even face is twice as likely as each odd face. All even faces are

equally likely, as are all odd faces. Construct a probabilistic model for a single roll of this die and find the

probability that the outcome is less than 4.

Solution

We first specify the sample space Ω = {1, 2, 3, 4, 5, 6}, all of which are disjoint. Then the probabilities are as

follows:

P(1) = P(3) = P(5) =
1

9

P(2) = P(4) = P(6) =
2

9

Let A = {outcome less than 4}. Taking the probability of this event and using the additivity axiom, we get

P(A) = P(1 ∪ 2 ∪ 3) = P(1) + P(2) + P(3)

=
1

9
+

2

9
+

1

9

=
4

9
,

so the probability of getting an outcome of a dice roll less than 4 is 4
9 . �
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Eric Chuu MATH 170A (Professor P.F. Rodriguez ): Homework #1 Problem 7

Problem 7

A four-sided die is rolled repeatedly, until the first time (if ever) that an even number is obtained. What is

the sample space for this experiment?

Solution

There are 2 cases and thus 2 sample spaces to consider:

Case 1: A finite sequence for which an even number is rolled on the nth roll. Then,

x1, x2, ..., xn−1 ∈ {1, 3} ,

xn ∈ {2, 4} .

In this case, the sample space consists of all possible outcomes of the above specified elements. Note that

these are sequences of length n.

Case 2: An infinite sequence for which an even number roll never occurs. Then,

x1, x2, ... ∈ {1, 3} .

In this case, the sample space consists of all possible outcomes of the above specified elements, consisting

entirely of odd numbers, either 1 or 3. Note that the elements of this sample space are infinite sequences. �

Problem 8

You enter a special kind of chess tournament, in which you play one game with each of three opponents,

but you get to choose the order in which you play your opponents, knowing the probability of a win against

each. You win the tournament if you win two games in a row, and you want to maximize the probability

of winning. Show that it is optimal to play the weakest opponent second, and that the order of playing the

other two opponents does not matter.

Solution

We first find the probability of winning the tournament. Winning the tournament involves winning the

2nd game because we need to win 2 consecutive games. Thus, there are three possible events that result

in winning the tournament: {WWW}, {WWL}, and {LWW}, where a W represents a win and an L

represents a loss. Foe example, WWL is the event that we win the first 2 rounds but lose the 3rd round. Let

P(win first round) = p1, P(win second round) = p2, and P(win third round) = p3. Since WWW, WWL,

and LWW are disjoint, we can write the probability of winning the tournament as:

P({WWW,WWL,LWW}) = P(WWW ) + P(WWL) + P(LWW )

= p1 · p2 · p3 + p1 · p2 · (1− p3) + (1− p1) · p2 · p3

= p2(p1 + p3− p1 · p3).

We then claim that playing the opponents in the order (1,2,3) with corresponding probabilities p1, p2, p3

optimizes the probability of winning the tournament. This means the probability calculated above must be

greater than or equal to the probability of winning if we choose alternative orders of play. Hence, if p2 ≥ p1

and we compare the new probability of winning the tournament if we play against the player who we have

p1 probability of beating in the 2nd round with the probability of our claimed optimal probability, we see

that

p2(p1 + p3− p1 · p3) ≥ p1(p2 + p3− p2 · p3).

Problem 8 continued on next page. . . 5



Eric Chuu MATH 170A (Professor P.F. Rodriguez ): Homework #1 Problem 8 (continued)

Note the in parentheses on the LHS, p1, p3 are reflexive, so the order in which we play the remaining two

players does not matter. The same can be said about the probabilities in the parentheses on the RHS as

well. Comparing the probability of winning the tournament if we play the player against whom we have p3

probability of winning, we see that

p2(p1 + p3− p1 · p3) ≥ p3(p1 + p2− p1 · p2).

In both cases, we see that playing against the player against whom we have the highest probability of winning

in the 2nd round optimizes our probability of winning the tournament. The reflexive nature of the other

probabilities in the parentheses seen in the above inequalities show that the order that we play the other

players does not matter. �

Problem 9

A partition of the sample space Ω is a collection of disjoint events S1, ..., Sn such that Ω = ∪ni=1Si.

(a) Show that for any event A, we have

P(A) =

n∑
i=1

P(A ∩ Si).

Solution

We can express A = ∪ni=1(A ∩ Si). Since the events Si are disjoint and (A ∩ Si) ⊂ Si for i = 1, ..., n, then

A ∩ Si for i = 1, ..., n are also disjoint. Then taking the probability, we get

P(A) = P(∪ni=1(A ∩ Si))

= P(A ∩ S1) + ... + P(A ∩ Sn)

=

n∑
i=1

P(A ∩ Si),

hence the desired result. �

(b) Use part (a) to show that for any events A,B,C, we have

P(A) = P (A ∩B) + P(A ∩ C) + P(A ∩Bc ∩ Cc)−P(A ∩B ∩ C).

Solution

Consider the sets (Bc∩Cc), (B∩C), (Bc∩C), (B∩Cc), which form a partition of the sample space Ω. Then

by part (a),

P(A) = P(A ∩Bc ∩ Cc) + P(A ∩B ∩ C) + P(A ∩Bc ∩ C) + P(A ∩B ∩ Cc) (3)

Note that A ∩ B = (A ∩ B ∩ C) ∪ (A ∩ B ∩ Cc), a disjoint union. Taking the probability and applying the

additivity axiom, we get

P(A ∩B) = P(A ∩B ∩ C) + P(A ∩B ∩ Cc). (4)

Similarly, A ∩ C = (A ∩B ∩ C) ∪ (A ∩Bc ∩ C). Taking the probability and applying additivity, we get

P(A ∩ C) = P(A ∩B ∩ C) + P(A ∩Bc ∩ C). (5)

Problem 9 continued on next page. . . 6
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Rearranging and substituting (4) and (5) back into (3), we get

P(A) = P(A ∩Bc ∩ Cc) + P(A ∩B)−P(A ∩B ∩ Cc) + P(A ∩ C)−P(A ∩B ∩ C) + P(A ∩B ∩ Cc)

= P(A ∩Bc ∩ Cc) + P(A ∩B) + P(A ∩ C)−P(A ∩B ∩ C),

which is exactly the equality we are trying to prove. �

Problem 10

Show that the formula

P((A ∩Bc) ∪ (Ac ∩B)) = P(A) + P(B)− 2P(A ∩B).

Solution

We first note that on the LHS, (A∩Bc)∪ (Ac∩B) is a disjoint union since (A∩Bc) ⊂ A and (Ac∩B) ⊂ Ac,

so using additivity, we can rewrite the LHS to get:

LHS = P((A ∩Bc) ∪ (Ac ∩B))

= P(A ∩Bc) + P(Ac ∩B)

We know that P(A ∪B) = P(A) + P(B)−P(A ∩B), so the RHS can be written,

RHS = P(A) + P(B)− 2P(A ∩B)

= P(A ∪B) + P(A ∩B)− 2P(A ∩B)

= P(A ∪B)−P(A ∩B)

We can write B = (A ∩B) ∪ (Ac ∩B), which is a disjoint union, so evaluating the RHS,

RHS = P(A ∪B)−P(A ∩B)

= P(A ∪ (A ∩B) ∪ (Ac ∩B))−P(A ∩B)

= P(A) ∪ (Ac ∩B))−P(A ∩B)

= P(A) + P(Ac ∩B)−P(A ∩B)

We can write A = (A ∩B) ∪ (Bc ∩A). Substituting this back into the RHS, we get

RHS = P((A ∩B) ∪ (Bc ∩A)) + P(Ac ∩B)−P(A ∩B)

= P(A ∩B) + P(Bc ∩A) + P(Ac ∩B)−P(A ∩B)

= P(Bc ∩A) + P(Ac ∩B)

= LHS,

so the equality is proven. �
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