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Paramater estimation

r Random sample – A random sample is a collection of n random variables X1, ..., Xn that
are independent and identically distributed with X.

r Estimator – An estimator θ̂ is a function of the data that is used to infer the value of an
unknown parameter θ in a statistical model.

r Bias – The bias of an estimator θ̂ is defined as being the difference between the expected
value of the distribution of θ̂ and the true value, i.e.:

Bias(θ̂) = E[θ̂]− θ

Remark: an estimator is said to be unbiased when we have E[θ̂] = θ.
r Sample mean and variance – The sample mean and the sample variance of a random
sample are used to estimate the true mean µ and the true variance σ2 of a distribution, are
noted X and s2 respectively, and are such that:

X =
1
n

n∑
i=1

Xi and s2 = σ̂2 =
1

n− 1

n∑
i=1

(Xi −X)2

r Central Limit Theorem – Let us have a random sample X1, ..., Xn following a given
distribution with mean µ and variance σ2, then we have:

X ∼
n→+∞

N
(
µ,

σ
√
n

)
Confidence intervals

r Confidence level – A confidence interval CI1−α with confidence level 1 − α of a true pa-
rameter θ is such that 1− α of the time, the true value is contained in the confidence interval:

P (θ ∈ CI1−α) = 1− α

r Confidence interval for the mean – When determining a confidence interval for the mean
µ, different test statistics have to be computed depending on which case we are in. The following
table sums it up:

Distribution Sample size σ2 Statistic 1− α confidence interval

any known
X − µ
σ√
n

∼ N (0,1)
[
X − zα

2
σ√
n
,X + zα

2
σ√
n

]
Xi ∼ N (µ, σ)

small unknown
X − µ
s√
n

∼ tn−1

[
X − tα

2
s√
n
,X + tα

2
s√
n

]
known

X − µ
σ√
n

∼ N (0,1)
[
X − zα

2
σ√
n
,X + zα

2
σ√
n

]
Xi ∼ any large

unknown
X − µ
s√
n

∼ N (0,1)
[
X − zα

2
s√
n
,X + zα

2
s√
n

]
Xi ∼ any small any Go home! Go home!

r Confidence interval for the variance – The single-line table below sums up the test
statistic to compute when determining the confidence interval for the variance.

Distribution Sample size µ Statistic 1− α confidence interval

Xi ∼ N (µ,σ) any any
s2(n− 1)

σ2 ∼ χ2
n−1

[
s2(n−1)
χ2

2
,
s2(n−1)
χ2

1

]
Hypothesis testing

r Errors – In a hypothesis test, we note α and β the type I and type II errors respectively. By
noting T the test statistic and R the rejection region, we have:

α = P (T ∈ R|H0 true) and β = P (T /∈ R|H1 true)

r p-value – In a hypothesis test, the p-value is the probability under the null hypothesis of
having a test statistic T at least as extreme as the one that we observed T0. We have:

Case Left-sided Right-sided Two-sided

p-value P (T 6 T0|H0 true) P (T > T0|H0 true) P (|T | > |T0||H0 true)

r Sign test – The sign test is a non-parametric test used to determine whether the median of
a sample is equal to the hypothesized median. By noting V the number of samples falling to
the right of the hypothesized median, we have:

Statistic when np < 5 Statistic when np > 5

V ∼
H0
B
(
n, p = 1

2

)
Z =

V − n
2√

n
2

∼
H0
N (0,1)

r Testing for the difference in two means – The table below sums up the test statistic to
compute when performing a hypothesis test where the null hypothesis is:

H0 : µX − µY = δ
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Distribution of Xi, Yi nX , nY σ2
X , σ

2
Y Statistic

any known
(X − Y )− δ√

σ2
X
nX

+
σ2
Y
nY

∼
H0
N (0,1)

Normal large unknown
(X − Y )− δ√

s2
X
nX

+
s2
Y
nY

∼
H0
N (0,1)

small unknown σX = σY
(X − Y )− δ

s

√
1
nX

+ 1
nY

∼
H0

tnX+nY −2

Normal, paired any unknown
D − δ
sD√
n

∼
H0

tn−1

Di = Xi − Yi nX = nY

r χ2 goodness of fit test – By noting k the number of bins, n the total number of samples,
pi the probability of success in each bin and Yi the associated number of samples, we can use
the test statistic T defined below to test whether or not there is a good fit. If npi > 5, we have:

T =
k∑
i=1

(Yi − npi)2

npi
∼
H0

χ2
df with df = (k − 1)−#(estimated parameters)

r Test for arbitrary trends – Given a sequence, the test for arbitrary trends is a non-
parametric test, whose aim is to determine whether the data suggest the presence of an increasing
trend:

H0 : no trend versus H1 : there is an increasing trend

If we note x the number of transpositions in the sequence, the p-value is computed as:

p-value = P (T 6 x)

Regression analysis

In the following section, we will note (x1, Y1), ..., (xn, Yn) a collection of n data points.
r Simple linear model – Let X be a deterministic variable and Y a dependent random
variable. In the context of a simple linear model, we assume that Y is linked to X via the
regression coefficients α, β and a random variable e ∼ N (0,σ), where e is referred as the error.
We estimate Y, α, β by Ŷ , A,B and have:

Y = α+ βX + e and Ŷi = A+Bxi

r Notations – Given n data points (xi, Yi), we define SXY ,SXX and SY Y as follows:

SXY =
n∑
i=1

(xi − x)(Yi − Y ) and SXX =
n∑
i=1

(xi − x)2 and SY Y =
n∑
i=1

(Yi − Y )2

r Sum of squared errors – By keeping the same notations, we define the sum of squared
errors, also known as SSE, as follows:

SSE =
n∑
i=1

(Yi − Ŷi)2 =
n∑
i=1

(Yi − (A+Bxi))2 = SY Y −BSXY

r Least-squares estimates – When estimating the coefficients α, β with the least-squares
method which is done by minimizing the SSE, we obtain the estimates A,B defined as follows:

A = Y −
SXY

SXX
x and B =

SXY

SXX

r Key results – When σ is unknown, this parameter is estimated by the unbiased estimator
s2 defined as follows:

s2 =
SY Y −BSXY

n− 2
and we have

s2(n− 2)
σ2 ∼ χ2

n−2

The table below sums up the properties surrounding the least-squares estimates A,B when
σ is known or not:

Coeff σ Statistic 1− α confidence interval

known
A− α

σ

√
1
n

+ X
2

SXX

∼ N (0,1)
[
A− zα

2
σ

√
1
n

+ X
2

SXX
,A+ zα

2
σ

√
1
n

+ X
2

SXX

]
α

unknown A−α

s

√
1
n

+ X
2

SXX

∼ tn−2

[
A− tα

2
s

√
1
n

+ X
2

SXX
,A+ tα

2
s

√
1
n

+ X
2

SXX

]

known B−β
σ√
SXX

∼ N (0,1)
[
B − zα

2
σ√
SXX

,B + zα
2

σ√
SXX

]
β

unknown B−β
s√
SXX

∼ tn−2

[
B − tα

2
s√
SXX

,B + tα
2

s√
SXX

]
Correlation analysis

r Sample correlation coefficient – The correlation coefficient is in practice estimated by the
sample correlation coefficient, often noted r or ρ̂, which is defined as:

r = ρ̂ =
SXY√
SXXSY Y

with
r
√
n− 2

√
1− r2

∼
H0

tn−2 for H0 : ρ = 0

r Correlation properties – By noting V1 = V −
zα

2√
n−3 , V2 = V +

zα
2√
n−3 with V = 1

2 ln
(

1+r
1−r

)
,

the table below sums up the key results surrounding the correlation coefficient estimate:

Sample size Standardized statistic 1− α confidence interval for ρ

large
V − 1

2 ln
( 1+ρ

1−ρ

)
1√
n−3

∼
n�1

N (0,1)
[
e2V1 − 1
e2V1 + 1

,
e2V2 − 1
e2V2 + 1

]
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