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01. COMBINATORIAL ANALYSIS
factorials - 1! = 0! = 1
N1 - if we know how to count the number of different ways that
an event can occur, we will know the probability of the event.
N2 - there are n! different arrangements for n objects.
N3 - there are n!

n1!n2! ...nr !
different arrangements of n

objects, of which n1 are alike, n2 are alike, ..., nr are alike.
Combinations(n

r

)
= n!

(n−r)! r! =
(n−1
r−1

)
+
(n−1
r

)
, 1 ≤ r ≤ n

N5 - Binomial Theorem: (x+ y)n =

n∑
k=0

(n
k

)
xkyn−k

Multinomial Coefficients( n
n1,n2,...,nr

)
= n!

n1!n2! ... nr !

N6 - represents the number of possible divisions of n distinct
objects into r distinct groups of respective sizes
n1, n2, . . . , n3, where n1 + n2 + · · ·+ nr = n
N7 - Multinomial Theorem: (x1 + x2 + · · ·+ xr)n =∑
(n1,...,nr):n1+n2+···+nr=n

n!
n1!n2! ...nr !

xn1
1 xn2

2 . . . xnrr

Number of Integer Solutions of Equations
N8 - there are

(n−1
r−1

)
distinct positive integer-valued vectors

(x1, x2, . . . , xr) satisfying
x1 + x2 + · · ·+ xr = n, xi > 0, i = 1, 2, . . . , r
N9 - there are

(n+r−1
r−1

)
distinct non-negative integer-valued

vectors (x1, x2, . . . , xr) satisfying x1 + x2 + · · ·+ xr = n

Proof. let yk = xk + 1⇒ y1 + y2 + · · ·+ yr = n+ r

02. AXIOMS OF PROBABILITY
DeMorgan’s Laws:

(
n⋃

i=1
Ei)

c =
n⋂

i=1
Ec

i and (
n⋂

i=1
Ei)

c =
n⋃

i=1
Ec

i

Axioms of Probability
definition 1: relative frequency
P (E) = limn→∞

n(E)
n

. problems: (1) n(E)
n

may not
converge when n→∞. (2) n(E)

n
may not converge to the

same value if the experiment is repeated.
Axioms (definition 2)
For each event E of the sample space S, we assume that a
number P (E) is defined and satisfies the following 3 axioms:
1. 0 ≤ P (E) ≤ 1 2. P (S) = 1

3. For mutually exclusive events, P (
∞⋃
i=1

Ei) =
∞∑
i=1

P (Ei).

mutually exclusive → EiEj = ∅ when i 6= j

Simple Propositions
N1 - P (∅) = 0
N6 - probability function ⇐⇒ it satisfies the 3 axioms.
N8 - if E ⊂ F , then P (E) ≤ P (F )
N10 - Inclusion-Exclusion identity where n = 3
P (E ∪ F ∪G) = P (E) + P (F ) + P (G)− P (EF )−
P (EG)− P (FG) + P (EFG)

N11 - Inclusion-Exclusion identity -
P (E1∪E2∪···∪En)=

n∑
i=1

P (Ei)−
∑

i1<i2

P (Ei1Ei2 )+...

+(−1)r+1 ∑
i1<···<ir

P (Ei1 ...Eir )+ ... +(−1)n+1P (E1...En)

(i) P (
⋃n
i=1 Ei) ≤

n∑
i=1

P (Ei)

(ii) P (
⋃n
i=1 Ei) ≥

n∑
i=1

P (Ei)−
∑
j<i

P (EiEj)

Sample Space w/ Equally Likely Outcomes
Consider S = {e1, e2, . . . , en}. Then P ({ei}) = 1

n
or

P ({e1}) = P ({e2}) = · · · = P ({en}) = 1
n

N1 - for any event E,
P (E) = # of outcomes inE

# of outcomes in S = # of outcomes inE
n

increasing sequence of events {En, n ≥ 1} →
E1 ⊂ E2 ⊂ · · · ⊂ En ⊂ . . .
decreasing sequence of events {En, n ≥ 1} →
E1 ⊃ E2 ⊃ · · · ⊃ En ⊃ . . .
increasing: lim

n→∞
En=

∞⋃
i=1

Ei, decreasing: lim
n→∞

En=
∞⋂
i=1

Ei

N2 - for both increasing and decreasing sequence,
lim
n→∞

P (En) = P ( lim
n→∞

En)

03. CONDITIONAL PROBABILITY AND
INDEPENDENCE
Conditional Probability

if P (F ) > 0, then P (E|F ) =
P (E∩F )
P (F )

multiplication rule: P (E1 . . . En) =
P (E1)P (E2|E1)P (E3|E1E2) . . . P (En|E1E2 . . . En−1)

N3 - axioms of probability apply to conditional probability
1. 0 ≤ P (E|F ) ≤ 1
2. P (S|F ) = 1 where S is the sample space
3. If Ei (i ∈ Z≥1) are mutually exclusive, then

P (
∞⋃
1
Ei|F ) =

∞∑
1
P (Ei|F )

N4 - If we defineQ(E) = P (E|F ), then all previously proven
results apply.
• P (E1 ∪ E2|F ) = P (E1|F ) + P (E2|F )− P (E1E2|F )

Total Probability & Bayes’ Theorem
conditioning formula -
P (E) = P (E|F )P (F ) + P (E|F c)P (F c)

P (F |E) =
P (EF )
P (E)

=
P (F )·P (E|F )

P (E)

P (F c|E) =
P (EF c)
P (E)

=
P (Fc)·P (E|Fc)

P (E)

Total Probability
theorem of total probability - Suppose F1, F2, . . . , Fn are

mutually exclusive events such that
n⋃
i=1

Fi = S, then

P (E) =
n∑
i=1

P (EFi) =
n∑
i=1

P (Fi)P (E|Fi)

Bayes Theorem

P (Fj |E) =
P (EFj)

P (E)
=

P (Fj)P (E|Fj)
n∑
i=1

P (Fi)P (E|Fi)

application of bayes’ theorem

P (B1 | A) =
P (A|B1)·P (B1)

P (A|B1)·P (B1)+P (A|B2)·P (B2)

Let A be the event that the person test positive for a disease.
B1: the person has the disease. B2: does not have.

true positives: P (B1 | A)
false positives: P (A | B2)

false negatives: P (Ā | B1)
true negatives: P (Ā | B2)

Independent Events
N1 - E ⊥ F ⇐⇒ P (EF ) = P (E) · P (F )

N2 - E ⊥ F ⇐⇒ P (E|F ) = P (E)

N3 - E ⊥ F ⇐⇒ E ⊥ F c
N4 - if E,F,G are independent, then E will be independent of
any event formed from F and G. (e.g. F ∪G)
N6 - (E ⊥ F ) ∧ (E ⊥ G) 6⇒ E ⊥ FG
N7 - For independent trials with probability p of success,
probability ofm successes before n failures, form,n ≥ 1,
method 1

S

F

A win

B win

A win

B win

Pn−1,m

Pn,m−1

p

1− p

method 2
Pn,m=

m+n−1∑
k=n

(
m+n−1

k

)
pk(1−

p)m+n−1−k

= P (≥ n successes inm+ n− 1 trials)

04. RANDOM VARIABLES
Types of Random Variables

• Bernoulli r.v. → p(x) =

{
p, x = 1, (’success’)
1− p, x = 0 (’failure’)

• Binomial r.v. → Y = X1 +X2 + · · ·+Xn where
X1, X2, . . . , Xn are independent Bernoulli r.v.’s.

• P (X = k) =
(n
k

)
pk(1− p)n−k

• P (k successes from n independent trials each with
probability p of success)

E(Y ) = np, V ar(Y ) = np(1− p)
• Negative Binomial →X = # trials until k successes

• E[X] = k/p
• Geometric →X = number of trials until a success

• P (X = k) = (1− p)k−1 · p where k = # trials needed
• E[X] = 1/p

• Hypergeometric →X = number of trials until success,
without replacement (form red balls ofN balls)

• P (X = k) =
(m
k

)(N−m
n−k

)
/
(N
n

)
, k = 0, 1, . . . , n

• E[X] = rn/N

Properties

N1 - ifX ∼ Binomial(n, p), and Y ∼ Binomial(n− 1, p),
then E(Xk) = np · E[(Y + 1)k−1]

N2 - ifX ∼ Binomial(n, p), then for k ∈ Z+,
P (X = k) =

(n−k+1)p
k(1−p) · P (X = k − 1)

Coupon Collector Problem

There areN distinct types of coupons. T denotes the number
of coupons needed to be collected for a complete set. What is

P (T = n)? Ans: P (T > n) =
N−1∑
i=1

(N
i

)
(N−i
N

)n(−1)i+1

Probability Mass Function
pmf ofX (discrete)→ p(a) = P (X = a)

•
∑∞
i=1 p(xi) = 1

Cumulative Distribution Function
• cdf of a r.v. X → the function F defined by

F (x) = P (X ≤ x), −∞ < x <∞
• F (x) is defined on the entire real line.

pmf,
a 1 2 4

p(a) 1
2

1
4

1
4

F (a) =
∑
p(x) for all

x ≤ a

cdf, F (a) =
0, a < 1

1/2, 1 ≤ a < 2

3/4, 2 ≤ a < 4

1, a ≥ 4

Expected Value, µ
discrete: E(X) =

∑
x x · p(x)

continuous: E(X) =
∫∞
−∞ x · f(x) dx

E[g(x)] =
∞∫
−∞

g(x)f(x) dx

N1 - if a and b are constants, then E(aX + b) = aE(X) + b
N3 - for a non-negative r.v. Y , E(Y ) =

∫∞
0 P (Y > y) dy

• I is an indicator variable for eventA if I =

{
1, ifA occurs

0, ifAc occurs
.

then E(I) = P (A).

2 methods for finding expectation of f(x)
1. using pmf of Y : let Y = f(X). FindX for each Y .
2. using pmf ofX : E[f(x)] =

∑
x f(x)p(x)

Variance
ForX with mean µ = E[X], the variance ofX is
V ar(X) = E[(X − µ)2] = E(x2)− [E(x)]2

• V ar(aX + b) = a2V ar(x)
• V ar(X) =

∑
xi

(xi − µ)2 · p(xi) (deviation · weight)

Poisson Random Variable
X is a Poisson r.v. with parameter λ if for some λ > 0,

P (X = i) = e−λ · λ
i

i!
E(X) = λ, V ar(X) = λ

• Poisson Approximation of Binomial - if
X ∼ Binomial(n, p), where n is large and p is small, then
X∼̇Poisson(λ) where λ = np. (X weak dependence is ok)

Poisson distribution as random events
LetN(t) be the number of events in time interval [0, t].
N1 - If the 3 assumptions are true, thenN(t) ∼ Poisson(λt).
N2 - If λ is the rate of occurrences of events per unit time, then
the number of occurrences in an interval of length t has a
Poisson distribution with mean λt.

P (N(t) = k) =
e−λt(λt)k

k!
, for k ∈ Z≥0

o(h) notation

o(h) stands for any function f(h) such that lim
h→0

f(h)

h
= 0

• o(h) + o(h) = o(h)
• λt
n

+ o( t
n

)=̇λt
n

for large n

Expected Value of sum of r.v.
For a r.v. X , letX(s) denote the value ofX when s ∈ S
N1 - E(x) =

∑
i
xiP (X = xi) =

∑
s∈S

X(s)p(s) where

Si = {s : X(s) = xi}

N2 - E(
n∑
i−1

) =
n∑
i=1

E(Xi) for r.v. X1, X2, . . . , Xn
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