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01. COMBINATORIAL ANALYSIS

factorials - 1! = 0! = 1

N1 - if we know how to count the number of different ways that
an event can occur, we will know the probability of the event.
N2 - there are n! different arrangements for n objects.

n! .
N3 - there are ——2 ; different arrangements of n
nilng!...n

objects, of which n1 are aﬁke, no are alike, ..., n, are alike.
Combinations

n ! _ (n—1 n—1

('r') = (71,77:”)!7'! - (7'—1) + ( r )’ I<r<n

n
N5 - Binomial Theorem: (z + y)" = Z (n> ahyn—k
k
k=0
Multinomial Coefficients

(o) = mrTatr
ni,ma,...,ny/  nilnal.ing!
N6 - represents the number of possible divisions of n distinct

objects into r distinct groups of respective sizes

ni,n2,...,n3,whereny +ng +---+n, =n
N7 - Multinomial Theorem: (x1 + T3 +Fx) =
ni_mno Ny
n1’n2 mELRE SRR

(N1yeeinp)ing fno+-4np=n

Number of Integer Solutions of Equations
N8 - there are (7'~ ) distinct positive integer-valued vectors
(z1,22,..., xr) satisfying

r1 + a2 + - +177n, z; >0, 1=1,2,.

N9 - there are (”*' ! distinct non-negative mteger valued

vectors (z1,x2,...,x,) satisfyingz1 +x2 + -+ x, =n
Proof. lety, = xp +1=y1 +y2+ -+ yr=n-+r
02. AXIOMS OF PROBABILITY
DeMorgan’s Laws:

n n n n
(UE)°=NEf ad (N E)°= U E}

i=1 i=1 i=1 i=1

Axioms of Probability
definition 1: relative frequency
P(E) = limy, 00 @ problems: (1) M may not
converge when n — co. (2) n<E> may not converge to the
same value if the experiment is repeated

Axioms (definition 2)

For each event IV of the sample space S, we assume that a
number P(FE) is defined and satisfies the following 3 axioms:
1.0<PE)<1 2.P(S):

3. For mutually exclusive events, P( U E;) =

1=1
mutually exclusive — E;E; = Q) when i # j

S P(E).

Simple Propositions

N1-P(0)=0

N6 - probability function <> it satisfies the 3 axioms.
N8 -if E C F,then P(E) < P(F)

N10 - Inclusion-Exclusion identity where n = 3
P(EUFUG)=P(E)+ P(F)+ P(G) — P(EF) —
P(EG) — P(FG)+ P(EFG)

N11 - Inclusion-Exclusion identity -
P(E1UEU-- UE,,)—Z P(Ej)— X P(E; Eiy)+...

i1 <ig

Tt P(E;| By )+ o +(—1)" P (B By)
i< <ip

() P(UiZy Ei) < Z P(E;)

(i P(UL, E )>ZP(E)—ZP(EE)

7j<i
Sample Space w/ Equally Likely Outcomes
Consider S = {e1,e2,...,en}. Then P({e;}) = 717 or
P({e1}) = P({e2}) = --- = P({en}) = &
N1 - for any event FE,

__ #ofoutcomesin E __ # of outcomes in E/
P(E) ~ # ofoutcomesin S T n
increasing sequence of events { £,,,n > 1} —
EFiCEyC---CE,C...
decreasing sequence ofevents {Ey,,n > 1} —
E1DE;D D En
increasing: hm E,= U E;, decreasing:
=1

hm E,= ﬂ E;
N2 - for both /ncreasmg and decreasing sequence

nhﬂmoo P(E,) = P(nleOC Ey)

03. CONDITIONAL PROBABILITY AND
INDEPENDENCE

Conditional Probability

it P(F) > 0, then P(E|F) = £0200
multiplication rule: P(E: ... E,) =
P(E1)P(E2|E1)P(E3|E1E2) ... P(En|E1Es ... Ep_1)

N3 - axioms of probability apply to conditional probability
1.0< PEIF)<1

2. P(S|F) = 1 where S is the sample space

3. If E; (1 € Z>1) are mutually exclusive, then

P(Ej Ei|F) = ﬁp(EAF)

N4 - If we define Q(E) = P
results apply.

(E|F), then all previously proven

. P(El U E2|F) = P(E1|F) + P(E2|F) — P(E1E2|F)
Total Probability & Bayes’ Theorem
conditioning formula -
P(E) = P(E|F)P(F )+P(E\F()P(F()

_ P(EF F)-P(E|F)
T i e
PFIE) = —5(E) P(E)
Total Probability

, Fy, are

theorem of total probability - Suppose I, F>, . ..
n

mutually exclusive events such that |J F; = S, then
i=1

> P(EF) = 3. P(F)P(EIF)

=1
Bayes Theorem

P(E) =

P(EF;)
P(E)

P(Fy|E) = Llil

,il P(F,)P(E|F;)

application of bayes’ theorem

_ P(AIB)-P(B)
P(Bi| A) = 5aTB0-P(B1) +P(ATB2) P (B2)

Let A be the event that the person test positive for a disease.
Bj: the person has the disease. Ba: does not have.

true positives: P(B; | A)
false positives: P(A | Ba)

false negatives: P(A | By)
true negatives: P(A | Ba)

Independent Events
-E1lF < P(EF)=

N2-F | F < P(E|F)=
-E1lF << FE_1F°

N4 - if £, F', G are independent, then E will be independent of

any event formed from F and G. (e.g. FFUG)

N6-(E LIYAN(ELG)#A ELFG

N7 - For independent trials with probability p of success,

probability of m successes before n failures, for m,n > 1,

P(E) - P(F)
P(E)

method 1 method 2
m+4n—1
/’_)Awm Pr o= (m+n—1)pk(1_
S 5w k=n

T, Lenawn pymAn ik
F=—

Bwin

= P(> n successes inm + n — 1 trials)

04. RANDOM VARIABLES

Types of Random Variables

, =1, '
* Bernoullir.v. — p(z) = b v » (success)
1—p, =0 (failure)
e Binomialrv. — Y = X; + Xo +--- + X,, where

X1, X2,..., X, are independent Bernoulli r.v.’s.
. P(X — k) — (Z)pk(l _ p)n—kt
« P(k successes from n independent trials each with
probability p of success)
E(Y)=np, Var(Y)=np(l—p)
» Negative Binomial — X = # trials until k successes
* E[X]=Fk/p
+ Geometric — X = number of trials until a success
« P(X =k) = (1 —p)*~1 - pwhere k = # trials needed
c E[X]=1/p
» Hypergeometric — X = number of trials until success,
without replacement (for ](In red ba}l\ls of NV balls)
PX= k) = () (/)b =0,1
* E[X]=rn/N
Properties
N1 - if X' ~ Binomial(n, p), and Y ~ Binomial(n — 1, p),
then E(X*) =np- E[(Y + 1)F—1]
N2 - if X ~ Binomial(n, p), then for k € Z+,
_ 1) — (n—k+tD)p _
P(X =k)= E=p) P(X=k-1)
Coupon Collector Problem

There are IV distinct types of coupons. I" denotes the number
of coupons needed to be collected for a complete set. What is

N—-1 .

P(T =n)? Ans: P(T >n) = > (V)(AFH)n(—1)i+!
1=1

Probability Mass Function

pmf of X (discrete) — p(a) = P(X = a)

s 2y p(z) =1

Cumulative Distribution Function
« cdf of ar.v. X — the function F' defined by

Fz)=P(X <z), —co<z<o0
« F'(z) is defined on the entire real line.
pmf, cdf, F'(a) =
a |1 2 4 0, a<1
@) | 3 1 1 1/2, 1<a<?2
F(a) = 3 p(z) for all 3/4, 2<a<4
z<a 1, a>4
Expected Value, 1
discrete: E(X) = x - p(x)

continuous: E(X) = [*_z - f(z)dx

Ely@)] = [ g@)f(@)da

N1 - if « and b are constants, then F(aX + b) =aFBE(X)+b
N3 - for a non-negative r.v. Y, E(Y) = [ P(Y > y)dy

. . ) . if A occurs
« [ is an indicator variable for event A if I = b
0, if A€ occurs

then E(I) = P(A).

2 methods for finding expectation of f(x)

1. usingpmfof Y: letY = f(X). Find X foreach Y.
2. using pmfof X: E[f(x)] = > f(z)p(x)

Variance
For X with mean . = E[X], the variance of X is
Var(X) = B[(X — p)?] = E(«®) — [B(x)]?
« Var(aX +b) = a®Var(zx)
«Var(X) = Zzl(x, — )2 - plx;) (deviation - weight)
Poisson Random Variable
X is a Poisson r.v. with parameter \ if for some A > 0,

P(X =1)= e M- )‘I

E(X)=M\, Var(X) =

» Poisson Approximation of Binomial - if

X ~ Binomial(n, p), where n is large and p is small, then
X ~Poisson(\) where A\ = np. (v weak dependence is ok)

Poisson distribution as random events

Let N (¢) be the number of events in time interval [0, ¢].

N1 - If the 3 assumptions are true, then N (¢) ~ Poisson(At).
- If X\ is the rate of occurrences of events per unit time, then

the number of occurrences in an interval of length ¢ has a

Poisson distribution with mean At.

=\t k
P(N(t) = k) = =207 fork € Zg
o(h) notation
. _fh)
o(h) stands for any function f (k) such that lim ~—— =0
h—0 h

* o(h) + o(h) = o(h)
. % + ()(%)i% for large n

Expected Value of sum of r.v.
Forarv. X, let X (s) denote the value of X whens € S

N1-E(z) = ZziP(X =xz;) = >, X(s)p(s) where
sES

S ={s : (a) 7%}

N2-E(>) = ZE( i) forrv. X1, Xo,..., Xy

7—1
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