

01. COMBINATORIAL ANALYSIS

factorials - 1! = 0! = 1

N1 - if we know how to count the number of different ways that an event can occur, we will know the probability of the event. **N2** - there are *n*! different arrangements for *n* objects. N3 - there are $\frac{n!}{n_1! n_2! \dots n_r!}$ different arrangements of nobjects, of which n_1 are alike, n_2 are alike, ..., n_r are alike. Combinations

$$\binom{n}{r} = \frac{n!}{(n-r)! \, r!} = \binom{n-1}{r-1} + \binom{n-1}{r}, \quad 1 \le r \le n$$
N5 - Binomial Theorem: $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$

Multinomial Coefficients

 $\binom{n}{n_1, n_2, \dots, n_r} = \frac{n!}{n_1! n_2! \dots n_r!}$

 ${f N6}$ - represents the number of possible divisions of n distinct objects into r distinct groups of respective sizes

 n_1, n_2, \ldots, n_3 , where $n_1 + n_2 + \cdots + n_r = n_1$ N7 - Multinomial Theorem: $(x_1 + x_2 + \dots + x_r)^n = \sum_{(n_1,\dots,n_r):n_1+n_2+\dots+n_r=n} \frac{n!}{n_1! n_2! \dots n_r!} x_1^{n_1} x_2^{n_2} \dots x_r^{n_r}$

Number of Integer Solutions of Equations

N8 - there are $\binom{n-1}{r-1}$ distinct *positive* integer-valued vectors (x_1, x_2, \ldots, x_r) satisfying $x_1 + x_2 + \dots + x_r = n, \quad x_i > 0, \quad i = 1, 2, \dots, r$ N9 - there are $\binom{n+r-1}{r-1}$ distinct *non-negative* integer-valued vectors (x_1, x_2, \ldots, x_r) satisfying $x_1 + x_2 + \cdots + x_r = n$ *Proof.* let $y_k = x_k + 1 \Rightarrow y_1 + y_2 + \dots + y_r = n + r$

02. AXIOMS OF PROBABILITY

DeMorgan's Laws:

 $(\bigcup_{i=1}^n E_i)^c = \bigcap_{i=1}^n E_i^c \quad \text{and} \quad (\bigcap_{i=1}^n E_i)^c = \bigcup_{i=1}^n E_i^c$

Axioms of Probability

definition 1: relative frequency

 $P(E) = \lim_{n \to \infty} \frac{n(E)}{n}$. problems: (1) $\frac{n(E)}{n}$ may not converge when $n \to \infty$. (2) $\frac{n(E)}{n}$ may not converge to the same value if the experiment is repeated.

Axioms (definition 2)

For each event E of the sample space S, we assume that a number P(E) is defined and satisfies the following 3 axioms: 1. $0 \le P(E) \le 1$ **2**. P(S) = 1

3. For mutually exclusive events, $P(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} P(E_i).$

mutually exclusive $\rightarrow E_i E_j = \emptyset$ when $i \neq j$

Simple Propositions

 $\mathbf{N1} - P(\emptyset) = 0$ N6 - probability function \iff it satisfies the 3 axioms. **N8** - if $E \subset F$, then $P(E) \leq P(F)$ **N10** - Inclusion-Exclusion identity where n = 3 $P(E \cup F \cup G) = P(E) + P(F) + P(G) - P(EF) -$ P(EG) - P(FG) + P(EFG)

N11 - Inclusion-Exclusion identity -

$$\begin{split} & P(E_1 \cup E_2 \cup \cdots \cup E_n) \!=\! \sum_{i=1}^n P(E_i) \!-\! \sum_{i_1 < i_2} P(E_{i_1} E_{i_2}) \!+\! \ldots \\ & + (-1)^{r+1} \sum_{i_1 < \cdots < i_r} P(E_{i_1} \ldots E_{i_r}) \!+\! \ldots + (-1)^{n+1} P(E_1 \ldots E_n) \end{split}$$
(i) $P(\bigcup_{i=1}^{n} E_i) \leq \sum_{i=1}^{n} P(E_i)$

(ii) $P(\bigcup_{i=1}^{n} E_i) \ge \sum_{i=1}^{n} P(E_i) - \sum_{j < i} P(E_i E_j)$

Sample Space w/ Equally Likely Outcomes

Consider $S = \{e_1, e_2, ..., e_n\}$. Then $P(\{e_i\}) = \frac{1}{n}$ or $P(\{e_1\}) = P(\{e_2\}) = \dots = P(\{e_n\}) = \frac{1}{n}$ **N1** - for any event E, $P(E) = \frac{\# \text{ of outcomes in } E}{\# \text{ of outcomes in } S} = \frac{\# \text{ of outcomes in } E}{n}$ **increasing sequence** of events $\{E_n, n \ge 1\} \rightarrow$ $E_1 \subset E_2 \subset \cdots \subset E_n \subset \ldots$ **decreasing sequence** of events $\{E_n, n \ge 1\} \rightarrow$ $E_1 \supset E_2 \supset \cdots \supset E_n \supset \ldots$ increasing: $\lim_{n \to \infty} E_n = \bigcup_{i=1}^{\infty} E_i$, decreasing: $\lim_{n \to \infty} E_n = \bigcap_{i=1}^{\infty} E_i$ N2 - for both increasing and decreasing sequence, $\lim_{n \to \infty} P(E_n) = P(\lim_{n \to \infty} E_n)$

03. CONDITIONAL PROBABILITY AND INDEPENDENCE

Conditional Probability

if P(F) > 0, then $P(E|F) = \frac{P(E \cap F)}{P(F)}$ multiplication rule: $P(E_1 \dots E_n) =$ $P(E_1)P(E_2|E_1)P(E_3|E_1E_2)\dots P(E_n|E_1E_2\dots E_{n-1})$ N3 - axioms of probability apply to conditional probability 1. $0 \le P(E|F) \le 1$ 2. P(S|F) = 1 where S is the sample space 3. If E_i $(i \in \mathbb{Z}_{>1})$ are mutually exclusive, then $P(\bigcup_{i=1}^{\infty} E_i | F) = \sum_{i=1}^{\infty} P(E_i | F)$ N4 - If we define Q(E) = P(E|F), then all previously proven results apply.

• $P(E_1 \cup E_2|F) = P(E_1|F) + P(E_2|F) - P(E_1E_2|F)$

Total Probability & Bayes' Theorem

conditioning formula -

 $P(E) = P(E|F)P(F) + P(E|F^c)P(F^c)$
$$\begin{split} P(F|E) &= \frac{P(EF)}{P(E)} = \frac{P(F) \cdot P(E|F)}{P(E)} \\ P(F^c|E) &= \frac{P(EF^c)}{P(E)} = \frac{P(F^c) \cdot P(E|F^c)}{P(E)} \end{split}$$

Total Probability

theorem of total probability - Suppose F_1, F_2, \ldots, F_n are mutually exclusive events such that $\bigcup_{i=1}^{n} F_i = S$, then i=1

$$(E) = \sum_{i=1}^{N} P(EF_i) = \sum_{i=1}^{N} P(F_i) P(E|F_i)$$

Bayes Theorem

$$P(F_j|E) = \frac{P(EF_j)}{P(E)} = \frac{P(F_j)P(E|F_j)}{\sum_{i=1}^{n} P(F_i)P(E|F_i)}$$

application of bayes' theorem

 $P(B_1 \mid A) = \frac{P(A|B_1) \cdot P(B_1)}{P(A|B_1) \cdot P(B_1) + P(A|B_2) \cdot P(B_2)}$

Let A be the event that the person test positive for a disease. B_1 : the person has the disease. B_2 : does not have.

true positives: $P(B_1 \mid A)$ false negatives: $P(\bar{A} \mid B_1)$ false positives: $P(A \mid B_2)$ true negatives: $P(\bar{A} \mid B_2)$

Independent Events

N1 - $E \perp F \iff P(EF) = P(E) \cdot P(F)$ N2 - $E \perp F \iff P(E|F) = P(E)$ N3 - $E \perp F \iff E \perp F^c$ N4 - if E, F, G are independent, then E will be independent of any event formed from F and G. (e.g. $F \cup G$)

N6 - $(E \perp F) \land (E \perp G) \not\Rightarrow E \perp FG$

N7 - For independent trials with probability p of success, probability of m successes before n failures, for $m, n \ge 1$, method 2 method 1

 $= P(\geq n \text{ successes in } m + n - 1 \text{ trials})$

04. RANDOM VARIABLES

Types of Random Variables

• Bernoulli r.v. $\rightarrow p(x) = \begin{cases} p, & x = 1, \text{ ('success')} \\ 1-p, & x = 0 & \text{ ('failure')} \end{cases}$ • **Binomial r.v.** $\rightarrow Y = X_1 + X_2 + \cdots + X_n$ where X_1, X_2, \ldots, X_n are independent Bernoulli r.v.'s. • $P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$ • P(k successes from n independent trials each withprobability p of success) $E(Y) = np, \quad Var(Y) = np(1-p)$ • Negative Binomial $\rightarrow X = \#$ trials until k successes • E[X] = k/p• **Geometric** $\rightarrow X =$ number of trials until a success

• $P(X = k) = (1 - p)^{k-1} \cdot p$ where k = # trials needed • E[X] = 1/p

• Hypergeometric $\rightarrow X =$ number of trials until success, without replacement (for m red balls of N balls)

• $P(X = k) = {\binom{n}{k}} {\binom{N-m}{n-k}} / {\binom{N}{n}}, k = 0, 1, \dots, n$ • E[X] = rn/N

Properties

N1 - if $X \sim \text{Binomial}(n, p)$, and $Y \sim \text{Binomial}(n-1, p)$, then $E(X^{k}) = np \cdot E[(Y+1)^{k-1}]$ **N2** - if $X \sim \text{Binomial}(n, p)$, then for $k \in \mathbb{Z}^+$, $P(X = k) = \frac{(n-k+1)p}{k(1-p)} \cdot P(X = k-1)$

Coupon Collector Problem

There are N distinct types of coupons. T denotes the number of coupons needed to be collected for a complete set. What is N-1 N

$$P(T = n)$$
? Ans: $P(T > n) = \sum_{i=1}^{N-1} {N \choose i} (\frac{N-i}{N})^n (-1)^{i+1}$

Probability Mass Function

pmf of X (discrete) $\rightarrow p(a) = P(X = a)$ • $\sum_{i=1}^{\infty} p(x_i) = 1$

Cumulative Distribution Function

cdf of a r.v. $X \rightarrow$ the function F defined by							
$F(x) = P(X \le x), -\infty < x < \infty$							
• $F(x)$ is defined on the entire real line.							
pmf,					$\operatorname{cdf}, F(a) =$		
a	1	2	4	1	0,	a < 1	
p(a)	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$	J	1/2,	$1 \leq a < c$	
$F(a) = \sum p(x)$ for all					3/4,	$2 \leq a < b$	
$x \leq a$					1,	$a \ge 4$	

Expected Value, μ

discrete: $E(X) = \sum_{x} x \cdot p(x)$ continuous: $E(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx$ $E[g(x)] = \int_{-\infty}^{\infty} g(x)f(x) \, dx$

N1 - if a and b are constants, then E(aX+b)=aE(X)+b N3 - for a non-negative r.v. Y, $E(Y)=\int_0^\infty P(Y>y)\,dy$ • *I* is an indicator variable for event *A* if $I = \begin{cases} 1, & \text{if } A \text{ occurs} \\ 0, & \text{if } A^c \text{ occurs} \end{cases}$ then E(I) = P(A).

2 methods for finding expectation of f(x)

1. using pmf of Y: let Y = f(X). Find X for each Y. 2. using pmf of X: $E[f(x)] = \sum_{x} f(x)p(x)$

Variance

For X with mean $\mu = E[X]$, the **variance** of X is $Var(X) = E[(X - \mu)^2] = E(x^2) - [E(x)]^2$ • $Var(aX+b) = a^2 Var(x)$ • $Var(X) = \sum_{x_i} (x_i - \mu)^2 \cdot p(x_i)$ (deviation · weight)

Poisson Random Variable

X is a **Poisson r.v.** with parameter λ if for some $\lambda > 0$,

$$P(X = i) = e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}$$
$$E(X) = \lambda, \quad Var(X) = \lambda$$

Poisson Approximation of Binomial - if

 $X \sim \text{Binomial}(n, p)$, where n is large and p is small, then $X \sim \text{Poisson}(\lambda)$ where $\lambda = np$. (\checkmark weak dependence is ok)

Poisson distribution as random events

Let N(t) be the number of events in time interval [0, t]. **N1** - If the 3 assumptions are true, then $N(t) \sim \text{Poisson}(\lambda t)$. N2 - If λ is the rate of occurrences of events per unit time, then the number of occurrences in an interval of length t has a Poisson distribution with mean λt .

$$P(N(t)=k)=rac{e^{-\lambda \iota}(\lambda t)^\kappa}{k!}, ext{ for } k\in\mathbb{Z}_{\geq 0}$$

o(h) notation

o(h) stands for any function f(h) such that $\lim_{h \to 0} \frac{f(h)}{h} = 0$ • o(h) + o(h) = o(h)• $\frac{\lambda t}{n} + o(\frac{t}{n}) = \frac{\lambda t}{n}$ for large n

Expected Value of sum of r.v.

For a r.v. X, let X(s) denote the value of X when $s \in S$ N1 - $E(x) = \sum\limits_{i} x_i P(X = x_i) = \sum\limits_{s \in \mathcal{S}} X(s) p(s)$ where $\mathcal{S}_i = \{s : X(s) = x_i\}$ **N2** - $E(\sum_{i=1}^{n}) = \sum_{i=1}^{n} E(X_i)$ for r.v. $X_1, X_2, ..., X_n$