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01. COMBINATORIAL ANALYSIS
tricky - E18, E20-22, E23, E26

The Basic Principle of Counting
• combinatorial analysis → the mathematical theory of counting
• basic principle of counting → Suppose that two experiments are performed. If
exp1 can result in any one ofm possible outcomes and if, for each outcome of
exp1, there are n possible outcomes of exp2, then together there aremn possible
outcomes of the two experiments.

• generalized basic principle of counting → If r experiments are performed such
that the first one may result in any of n1 possible outcomes and if for each of these
n1 possible outcomes, there are n2 possible outcomes of the 2nd exp, and if ...,
then there is a total of n1 · n2 · · · · · nr possible outcomes of r experiments.

Permutations
factorials - 1! = 0! = 1
N1 - if we know how to count the number of different ways that an event can occur,
we will know the probability of the event.
N2 - there are n! different arrangements for n objects.
N3 - there are n!

n1!n2! ...nr !
different arrangements of n objects, of which n1 are

alike, n2 are alike, ..., nr are alike.

Combinations
N4 -

(n
r

)
= n!

(n−r)! r! represents the number of different groups of size r that could
be selected from a set of n objects when the order of selection is not considered
relevant.
N4b -

(n
r

)
=
(n−1
r−1

)
+
(n−1
r

)
, 1 ≤ r ≤ n

Proof. If object 1 is chosen⇒
(n−1
r−1

)
ways of choosing the remaining objects.

If object 1 is not chosen⇒
(n−1
r

)
ways of choosing the remaining objects.

N5 - The Binomial Theorem - (x+ y)n =
n∑
k=0

(n
k

)
xkyn−k

Proof. by mathematical induction: n = 1 is true; expand; sub dummy variable;
combine using N4b; combine back to final term

Multinomial Coefficients
N6 -

( n
n1,n2,...,nr

)
= n!

n1!n2! ... nr !
represents the number of possible divisions of

n distinct objects into r distinct groups of respective sizes n1, n2, . . . , n3, where
n1 + n2 + · · ·+ nr = n

Proof. using basic counting principle,
=
( n
n1

)(n−n1
n2

)(n−n1−n2
n3

)
. . .
(n−n1−n2−nr−1

nr

)
= n!

(n−n1)!n1!
× (n−n1)!

(n−n1−n2)!n2!
× · · · × (n−n1−n2−···−nr−1)

0!nr !

= n!
n1!n2! ... nr !

N7 - The Multinomial Theorem: (x1 + x2 + · · ·+ xr)n

=
∑

(n1,...,nr):n1+n2+···+nr=n

n!
n1!n2! ...nr !

xn1
1 xn2

2 . . . xnrr

Number of Integer Solutions of Equations
N8 - there are

(n−1
r−1

)
distinct positive integer-valued vectors (x1, x2, . . . , xr)

satisfying x1 + x2 + · · ·+ xr = n, xi > 0, i = 1, 2, . . . , r
! cannot be directly applied to N8 as 0 value is not included
N9 - there are

(n+r−1
r−1

)
distinct non-negative integer-valued vectors

(x1, x2, . . . , xr) satisfying x1 + x2 + · · ·+ xr = n

Proof. let yk = xk + 1⇒ y1 + y2 + · · ·+ yr = n+ r

02. AXIOMS OF PROBABILITY
Sample Space and Events
• sample space → The set of all outcomes of an experiment (where outcomes are
not predictable with certainty)

• event → Any subset of the sample space
• union of events E and F → E ∪ F is the event that contains all outcomes that
are either in E or F (or both).

• intersection of events E and F → E ∩ F or EF is the event that contains all
outcomes that are both in E and in F .

• complement of E→ Ec is the event that contains all outcomes that are not in E.
• subset → E ⊂ F is all of the outcomes in E that are also in F .

• E ⊂ F ∧ F ⊂ E ⇒ E = F

DeMorgan’s Laws

(
n⋃

i=1
Ei)

c =
n⋂

i=1
Ec

i

Proof. to show LHS ⊂ RHS: let x ∈ (
⋃n
i=1 Ei)

c

⇒ x /∈
⋃n
i=1 Ei ⇒ x /∈ E1 and x /∈ E2 . . . and x /∈ En

⇒ x ∈ Ec1 and x ∈ Ec2 . . . and x ∈ Ecn
⇒ x ∈

⋂n
i=1 E

c
i

to show RHS ⊂ LHS: let x ∈
⋂n
i=1 E

c
i

(
n⋂

i=1
Ei)

c =
n⋃

i=1
Ec

i

Proof. using the first law of DeMorgan, negate LHS to get RHS

Axioms of Probability
definition 1: relative frequency

P (E) = lim
n→∞

n(E)

n
problems with this definition:
1. n(E)

n
may not converge when n→∞

2. n(E)
n

may not converge to the same value if the experiment is repeated

definition 2: Axioms
Consider an experiment with sample space S. For each eventE of the sample space
S, we assume that a number P (E) is defined and satisfies the following 3 axioms:
1. 0 ≤ P (E) ≤ 1
2. P (S) = 1
3. For any sequence of mutually exclusive events E1, E2, . . .

(i.e., events for which EiEj = ∅ when i 6= j),

P (
∞⋃
i=1

Ei) =
∞∑
i=1

P (Ei)

P (E) is the probability of event E.

Simple Propositions
N1 - P (∅) = 0

N2 - P (
n⋃
i=1

Ei) =
n∑
i=1

P (Ei) (aka axiom 3 for a finite n)

N3 - strong law of large numbers - if an experiment is repeated over and over
again, then with probability 1, the proportion of time during which any specific event
E occurs will be equal to P (E).
N6 - the definitions of probability are mathematical definitions. They tell us which set
functions can be called probability functions. They do not tell us what value a
probability function P (·) assigns to a given event E.

probability function ⇐⇒ it satisfies the 3 axioms.

N7 - P (Ec) = 1− P (E)
N8 - if E ⊂ F , then P (E) ≤ P (F )
N9 - P (E ∪ F ) = P (E) + P (F )− P (E ∩ F )
N10 - Inclusion-Exclusion identity where n = 3

P (E ∪ F ∪G) = P (E) + P (F ) + P (G)

− P (EF )− P (EG)− P (FG)

+ P (EFG)

N11 - Inclusion-Exclusion identity -

P (E1 ∪ E2 ∪ · · · ∪ En) =

n∑
i=1

P (Ei)−
∑
i1<i2

P (Ei1Ei2 ) + . . .

+ (−1)r+1
∑

i1<i2<···<ir

P (Ei1Ei2 . . . Eir ) + . . .

+ (−1)n+1P (E1E2 . . . En)

Proof. Suppose an outcome with probability ω is in exactlym of the events Ei,
wherem > 0. Then
LHS: the outcome is in E1 ∪ E2 ∪ · · · ∪ En and ω will be counted once in
P (E1 ∪ E2 ∪ · · · ∪ En)
RHS:
• the outcome is in exactlym of the events Ei and ω will be counted exactly(m

1

)
times in

n∑
i=1

P (Ei)

• the outcome is contained in
(m

2

)
subsets of the type Ei1Ei2 and ω will be

counted
(m

2

)
times in

∑
i1<i2

P (Ei1Ei2 )

• . . . and so on
hence RHS =

(m
1

)
ω −

(m
2

)
ω +

(m
3

)
ω − · · · ±

(m
m

)
ω

= ω
m∑
i=0

(m
i

)
(−1)i = binomial theorem where x = −1, y = 1

= 0 = LHS

e.g. For an outcome with probability ω and n = 3

• Case 1. w = P (E1E2)
LHS = ω
RHS = (ω + ω + 0) - (ω + 0 + 0) + 0 = ω

• Case 2. ω = P (E1 ∩ E2 ∩ E3)
LHS = ω
RHS = (ω + ω + ω) - (ω + ω + ω) + ω = ω

N12 -
(i) P (

⋃n
i=1 Ei) ≤

n∑
i=1

P (Ei)

(ii) P (
⋃n
i=1 Ei) ≥

n∑
i=1

P (Ei)−
∑
j<i

P (EiEj)

(iii) P (
⋃n
i=1 Ei) ≤

n∑
i=1

P (Ei)−
∑
j<i

P (EiEj) +
∑
k<j<i P (EiEjEk)

(iv) and so on.

Proof.
n⋃
i=1

Ei=E1∪Ec1E2∪Ec1E
c
2E3∪···∪Ec1E

c
2...E

c
n−1En

P (
n⋃
i=1

Ei)=P (E1)+P (Ec1E2)+P (Ec1E
c
2E3)+···+P (Ec1E

c
2...E

c
n−1En)

Sample Space having Equally Likely Outcomes
tricky - 14, 15, 16, 18, 19, 20
Consider an experiment with sample space S = {e1, e2, . . . , en}. Then
P ({e1}) = P ({e2}) = · · · = P ({en}) = 1

n
or P ({ei}) = 1

n
.

N1 - for any event E, P (E) = # of outcomes inE
# of outcomes in S = # of outcomes inE

n

increasing sequence of events {En, n ≥ 1} →
E1 ⊂ E2 ⊂ · · · ⊂ En ⊂ En+1 ⊂ . . .



lim
n→∞

En =
∞⋃
i=1

Ei

decreasing sequence of events {En, n ≥ 1} →
E1 ⊃ E2 ⊃ · · · ⊃ En ⊃ En+1 ⊃ . . .

lim
n→∞

En =
∞⋂
i=1

Ei

03. CONDITIONAL PROBABILITY AND
INDEPENDENCE
tricky - E6, urns (p.37)

Conditional Probability
N1 - if P (F ) > 0. then P (E|F ) =

P (E∩F )
P (F )

N2 - multiplication rule - P (E1E2 . . . En) =
P (E1)P (E2|E1)P (E3|E1E2) . . . P (En|E1E2 . . . En−1)
N3 - axioms of probability apply to conditional probability
1. 0 ≤ P (E|F ) ≤ 1
2. P (S|F ) = 1 where S is the sample space
3. If Ei (i ∈ Z≥1) are mutually exclusive events, then

P (
∞⋃
1
Ei|F ) =

∞∑
1
P (Ei|F )

N4 - If we defineQ(E) = P (E|F ), thenQ(E) can be regarded as a probability
function on the events of S, hence all results previously proved for probabilities apply.
• Q(E1 ∪ E2) = Q(E1) +Q(E2)−Q(E1E2)
• P (E1 ∪ E2|F ) = P (E1|F ) + P (E2|F )− P (E1E2|F )

Total Probability & Bayes’ Theorem
conditioning formula - P (E) = P (E|F )P (F ) + P (E|F c)P (F c)
tree diagram -

F

F c

E

Ec

E

Ec

P (E|F )

P (E|Fc)

P (F )

P (F c)

P (F |E) =
P (EF )
P (E)

=
P (F )·P (E|F )

P (E)

P (F c|E) =
P (EF c)
P (E)

=
P (Fc)·P (E|Fc)

P (E)

Total Probabililty
theorem of total probability - Suppose F1, F2, . . . , Fn are mutually exclusive

events such that
n⋃
i=1

Fi = S, then P (E) =
n∑
i=1

P (EFi) =
n∑
i=1

P (Fi)P (E|Fi)

Bayes Theorem

P (Fj |E) =
P (EFj)

P (E)
=

P (Fj)P (E|Fj)
n∑
i=1

P (Fi)P (E|Fi)

application of bayes’ theorem

P (B1 | A) =
P (A|B1)·P (B1)

P (A|B1)·P (B1)+P (A|B2)·P (B2)

Let A be the event that the person test positive for a disease.
B1: the person has the disease. B2: the person does not have the disease.

true positives: P (B1 | A)
false positives: P (A | B2)

false negatives: P (Ā | B1)
true negatives: P (Ā | B2)

Independent Events
N1 - E and F are independent ⇐⇒ P (EF ) = P (E) · P (F )
N2 - E and F are independent ⇐⇒ P (E|F ) = P (E)
N3 - if E and F are independent, then E and F c are independent.
N4 - if E,F,G are independent, then E will be independent of any event formed
from F and G. (e.g. F ∪G)
N5 - if E,F,G are independent, then P (EFG) = P (E)P (F )P (G)

N6 - if E and F are independent and E and G are independent,
6⇒ E and FG are independent

N7 - For independent trials with probability p of success, probability ofm successes
before n failures, form,n ≥ 1,
method 1

S

F

A win

B win

A win

B win

Pn−1,m

Pn,m−1

p

1− p

method 2

Pn,m =

m+n−1∑
k=n

(m+ n− 1

k

)
pk(1− p)m+n−1−k

= P (exactly k successes inm+ n− 1 trials)
recursive approach to solving probabilities: see page 85 alternative approach

04. RANDOM VARIABLES
• random variable → a real-valued function defined on the sample space

Types of Random Variables
• X is a Bernoulli r.v. with parameter p if→

p(x) =

{
p, x = 1, (’success’)
1− p, x = 0 (’failure’)

• Y is a Binomial r.v. with parameters n and p→ Y = X1 +X2 + · · ·+Xn
whereX1, X2, . . . , Xn are independent Bernoulli r.v.’s with parameter p.

• P (X = k) =
(n
k

)
pk(1− p)n−k

• P (k successes from n independent trials each with probability p of success)
• e.g. number of red balls out of n balls drawn with replacement
• E(Y ) = np, V ar(Y ) = np(1− p)

• Negative Binomial →X = number of trials until k successes are obtained
• e.g. number of balls drawn (with replacement) until k red balls are obtained

• Geometric →X = number of trials until a success is obtained
• P (X = k) = (1− p)k−1 · p where k is the number of trials needed
• e.g. number of balls drawn (with replacement) until 1 red ball is obtained

• Hypergeometric →X = number of trials until success, without replacement
• e.g. number of red balls out of n balls drawn without replacement

Summary
binomial X = # of successes in n trials w/ replacement np

negative binomial X = # of trials until k successes k/p
geometric X = # of trials until a success 1/p

hypergeometric X = # of successes in n trials, no replacement rn/N

Properties
N1 - ifX ∼ Binomial(n, p), and Y ∼ Binomial(n− 1, p),
then E(Xk) = np · E[(Y + 1)k−1]
N2 - ifX ∼ Binomial(n, p), then for k ∈ Z+,

P (X = k) =
(n−k+1)p
k(1−p) · P (X = k − 1)

Coupon Collector Problem
Q. Suppose there areN distinct types of coupons. If T denotes the number of

coupons needed to be collected for a complete set, what is P (T = n)?

A. P (T > n− 1) = P (T ≥ n) = P (T = n) + P (T > n)
⇒ P (T = n) = P (T > n− 1)− P (T > n) Let

Aj = {no type j coupon is contained among the first n}
P (T > n) = P (

⋃N
j=1 Aj)

Using the inclusion-exclusion identity,
P (T > n) =

∑
j
P (Aj) - coupon j is not among the first n collected

−
∑
j1

∑
j2

P (Aj1Aj2 ) - coupon j1 and j2 are not the first n

+ · · ·+ (−1)k+1
∑
j1

∑
j2

· · ·
∑
jk

P (Aj1Aj2 · · ·Ajn ) + . . .

+(−1)N+1P (A1A2 · · ·AN )

P (Aj1Aj2 · · ·Ajn ) = (N−k
N

)n

Hence P (T > n) =
N−1∑
i=1

(N
i

)(N−1
N

)n
(−1)i+1

Probability Mass Function
• for a discrete r.v., we define the probability mass function (pmf) ofX by
p(a) = P (X = a)

• cdf, F (a) =
∑
p(x) for all x ≤ a

• ifX assumes one of the values x1, x2, . . . , then
∞∑
i=1

p(xi) = 1

• the pmf p(a) is positive for at most a countable number of values of a

• e.g.
a 1 2 4

p(a) 1
2

1
4

1
4

• discrete variable→ a random variable that can take on at most a countable
number of possible values

Cumulative Distribution Function
• for a r.v. X , the function F defined by F (x) = P (X ≤ x), −∞ < x <∞, is
called the cumulative distribution function (cdf) ofX .

• aka distribution function
• F (x) is defined on the entire real line

• e.g. F (a) =


0, a < 1
1
2
, 1 ≤ a < 2

3
4
, 2 ≤ a < 4

1, a ≥ 4

Expected Value
• aka population mean/sample mean, µ
• ifX is a discrete random variable having pmf p(x), the expectation or the
expected value ofX is defined as E(X) =

∑
x
x · p(x)

N1 - if a and b are constants, then E(aX + b) = aE(X) + b

N2 - the nth moment of ofX is given as E(Xn) =
∑
x x

n · p(x)

• I is an indicator variable for event A if I =

{
1, ifA occurs

0, ifAc occurs
. then E(I) = P (A).

Proof of N1. E(aX + b) =
∑
x(aX + b)p(x)

= a ·
∑
x xp(x) + b ·

∑
x p(x) = a · E(X) + b

finding expectation of f(x)

• method 1, using pmf of Y : let Y = f(X). Find correspondingX for each Y .
• method 2, using pmf ofX : E[g(x)] =

∑
i g(xi)p(xi)

• whereX is a discrete r.v. that takes on one of the values of xi with the
respective probabilities of p(xi), and g is any real-valued function g

Variance

IfX is a r.v. with mean µ = E[X], then the variance ofX is defined by
V ar(X) = E[(X − µ)2]

=
∑

xi(xi − µ)2 · p(xi) (deviation · weight)

= E(x2)− [E(x)]2

• V ar(aX + b) = a2V ar(x)



Poisson Random Variable
a r.v. X is said to be a Poisson r.v. with parameter λ if for some λ > 0,

P (X = i) = e−λ · λ
i

i!
• notation: X ∼ Poisson(λ)
•
∑∞
i=0 P (X = i) = 1

• Poisson Approximation of Binomial - ifX ∼ Binomial(n, p), n is large and p is
small, thenX∼̇Poisson(λ) where λ = np.

• For n independent trials with probability p of success, the number of successes
is approximately a Poisson r.v. with parameter λ = np if n is large & p is small.

• Poisson approximation remains even when the trials are not independent,
provided that their dependence is weak.

• 2 ways to look at the Poisson distribution
1. an approximation to the binomial distribution with large n and small p
2. counting the number of events that occur at random at certain points in time

Mean and Variance
ifX ∼ Poisson(λ), then E(X) = λ, V ar(X) = λ

Poisson distribution as random events
LetN(t) be the number of events that occur in time interval [0, t].
N1 - If the 3 assumptions are true, thenN(t) ∼ Poisson(λt).
N2 - If λ is the rate of occurrences of events per unit time, then the number of
occurrences in an interval of length t has a Poisson distribution with mean λt.

P (N(t) = k) =
e−λt(λt)k

k!
, for k ∈ Z≥0

o(h) notation

o(h) stands for any function f(h) such that lim
h→0

f(h)

h
= 0

• a function of h that is small compared to h when h is small
• o(h) + o(h) = o(h)
• λt
n

+ o( t
n

)=̇λt
n

for large n

Expected Value of sum of r.v.
For a r.v. X , letX(s) denote the value ofX when s ∈ S
N1 - E(x) =

∑
i
xiP (X = xi) =

∑
s∈S

X(s)p(s) where Si = {s : X(s) = xi}

N2 - E(
n∑
i−1

) =
n∑
i=1

E(Xi) for r.v. X1, X2, . . . , Xn

examples
Selecting hats problem
Let n be the number of men who select their own hats. Let IE be an indicator r.v. for
E. Ei is the event that the i-th man selects his own hat. LetX be the number of
men that select their own hats.
• X = IE1

+ IE2
+ · · ·+ IEn

• P (Ei) = 1
n

• P (Ei|Ej) = 1
n−1

6= P (Ej) for j < i (hence Ei and Ej are not independent)
• but dependence is weak for large n

• X satisfies the other conditions for binomial r.v., besides independence (n trials
with equal probability of success)

• Poisson approximation ofX : X ∼ Poisson(λ)
• λ = n · P (Ei) = n · 1

n
= 1

• P (X = i) = e−11i

i!
= e−1

i!

• P (X = 0) = e−1 ≈ 0.37
No 2 people have the same birthday
For
(n

2

)
pairs of individuals i and j, i 6= j, let Eij be the event where they have the

same birthday. LetX be the number of pairs with the same birthday.
• X = IE1

+ IE2
+ · · ·+ IEn

• Each Eij is only pairwise independent. P (Eij) = 1
365

• i.e. Eij and Emn are independent
• butE12 and (E13 ∩E23) are not independent ⇒ P (E12|E13 ∩E23) = 1

• X∼̇Poisson(λ), λ =

(
n
2

)
365

=
n(n−1)

730
⇒ P (X = 0) = e−

n(n−1)
730

• for P (X = 0) ≤ 1
2
, n ≥ 23

distribution of time to next event
Q. suppose an accident happens at a rate of 5 per day. Find the distribution of time,
starting from now, until the next accident.

A. LetX = time (in days) until the next accident.
Let V = be the number of accidents during time period [0, t].

V ∼ Poisson(5t) ⇒ P (V = k) =
e−5t·(5t)k

k!

P (X > t) = P (no accidents happen during [0, t]) = P (V = 0) = e−5t

P (X ≤ t)− 1− e−5t

05. CONTINUOUS RANDOM VARIABLES
X is a continuous r.v. → if there exists a nonnegative function f defined for all real
x ∈ (−∞,∞), such that P (X ∈ B) =

∫
B f(x) dx

N1 - P (X ∈ (−∞,∞)) =
∫∞
−∞ f(x) dx = 1

N2 - P (a ≤ X ≤ b) =
∫ b
a f(x) dx

N3 - P (X = a) =
∫ a
a f(x) dx = 0

N4 - P (X < a) = P (X ≤ a) =
∫ a
−∞ f(x) dx

N5 - interpretation of probability density function

P (x < X < x+ dx) =

∫ x+dx

x
f(y) dy

≈ f(x) · dx
pdf at x, f(x) ≈ P (x<X<x+dx)

dx

N6 - ifX is a continuous r.v. with pdf f(x) and cdf F (x), then f(x) = d
dx
F (x).

(Fundamental Theorem of Calculus)
N7 - median ofX , x occurs where F (x) = 1

2

Generating a Uniform r.v.
ifX is a continuous r.v. with cdf F (x), then
• N8 - F (X) = U ∼ uniform(0, 1).

Proof. let Y = F (X). then cdf of Y , FY (y) =
P (Y ≤ y) = P (F (X) ≤ y) = P (X ≤ F−1(y)) = F (F−1(y)) = y.
hence Y is a uniform r.v.

• N9 -X = F−1(U) ∼ cdf F (x).
• generating a r.v. from a uniform(0, 1) r.v. and a r.v. with cdf F (x).

Expectation & Variance
expectation
N1 - expectation ofX , E(X) =

∫∞
−∞ x · f(x) dx

N2 - ifX is a continuous r.v. with pdf f(x), then for any real-valued function g,
E[g(x)] =

∫∞
−∞ g(x)f(x) dx

N2a E[aX + b] =
∫∞
−∞(aX + b) · f(x) dx = a · E(X) + b

N3 - for a non-negative r.v. Y , E(Y ) =
∫∞
0 P (Y > y) dy

Proof.
∫∞
0 P (Y > y) dy =

∫∞
0

∫∞
y fY (x) dx dy (because f(x) = d

dx
F (x))

=
∫∞
0

∫ x
0 fY (x) dy dx (draw diagram to convert integration)

=
∫∞
0 fY (x)

∫ x
0 dy dx

=
∫∞
0 xfY (x) dx (because

∫ x
0 dy = x)

= E(Y )

variance
N1 - variance ofX , V ar(X) = E[(X − µ)2] = E(X2)− [E(X)]2

example
Q - Find the pdf of (b− a)X + a where a, b are constants, b > a. The pdf ofX is

given by f(x) =

{
1, 0 ≤ X ≤ 1

0, otherwise
.

A. Let Y = (b− a)X + a.
cdf, FY (y) = P (Y ≤ y) = P ((b− a)X + a ≤ y) = P (X ≤ y−a

b−a )

FY (y) =
∫ y−a
b−a

0 1 dx = y−a
b−a , a < y < b

fY (y) = d
dy
FY (y) =

{
1
b−a , a < y < b

0, otherwise

Uniform Random Variable
X is a uniform r.v. on the interval (α, β),X ∼ Uniform(α, β)
if its pdf is given by

f(x) =

{
1

β−α , α < x < β

0, otherwise

E(X) = α+β
2
, V ar(X) =

(β−α)2

12

ifX ∼ Uniform(α, β), then x−α
β−α ∼ Uniform(0, 1)

Normal Random Variable
X is a normal r.v. with parameters µ and σ2,X ∼ N(µ, σ2)
if the pdf ofX is given by

f(x) = 1√
2πσ

e
− 1

2
( x
µ
σ)2 , −∞ < x <∞

E(x) = µ, V ar(X) = σ2

ifX ∼ N(µ, σ2), then X−µ
σ
∼ N(0, 1)

ifY ∼ N(µ, σ2) anda is a constant,Fy(a) = Φ(a−µ
σ

)

standard normal distribution →X ∼ N(0, 1)

• F (x) = P (X ≤ x) = 1√
rπ

∫ x
−∞ e−

1
2
y2 dy = Φ(x)

Normal Approximation to the Binomial Distribution
if Sn ∼ Binomial(n, p), then Sn−np√

np(1−p)
∼ N(0, 1) for large n.

µ = np, σ2 = np(1− p)

Exponential Random Variable
a continuous r.v. X is a exponential r.v., X ∼ Exponential(λ) or Exp(λ)
if for some λ > 0, its pdf is given by

f(x) =

{
λe−λx, x ≥ 0

0, otherwise
E(X) = 1

λ
, V ar(X) = 1

λ2

P (X < a) =
∫ a
0 λe−λx dx



• an exponential r.v. is memoryless.
• a non-negative r.v. is memoryless → if
P (X > s+ t | X > t) = P (X > s) for all s, t > 0.

Gamma Distribution
a r.v. X has a gamma distribution, X ∼ Gamma(α, λ)

with parameters (α, λ), λ > 0 and α > 0 if its pdf is given by

f(x)

{
λe−λx(λx)α−1

Γ(α)
, x ≥ 0

0, x < 0

E(X) = α
λ

V ar(X) = α
λ2

where the gamma function Γ(α) is defined as Γ(α) =
∫∞
0 e−yyα−1 dy.

N1 - Γ(α) = (α− 1)Γ(α− 1)

Proof. using integration by parts of LHS to RHS
N2 - if α is an integer n, then Γ(n) = (n−1)!
N3 - ifX ∼ Gamma(α, λ) and α = 1, then
X ∼ Exp(λ).

N4 - for events occurring randomly in time following the 3 assumptions of poisson
distribution, the amount of time elapsed until a total of n events has occurred is a
gamma r.v. with parameters (n, λ).
• time at which event n occurs, Tn ∼ Gamma(n, λ)
• number of events in time period [0, t],N(t) ∼ Poisson(λt)

N5 - Gamma(α = n
2
, λ = 1

2
) = χ2

n (chi-square distribution to n degrees of
freedom)

Beta Distribution
a r.v. X is said to have a beta distribution,X ∼ Beta(a, b)

if its density is given by

f(x) =

{
1

β(a,b)
xa−1(1− x)b−1, 0 < x < 1

0, otherwise
E(X) = a

a+b
V ar(X) = ab

(a+b)2(a+b+1)

N1 - β(a, b) =
∫ 1
0 x

a−1(1− x)b−1 dx

N2 - β(a = 1, b = 1) = Uniform(0, 1)

N3 - β(a, b) =
Γ(a)Γ(b)
Γ(a+b)

Cauchy Distribution
a r.v. X has a cauchy distribution, X ∼ Cauchy(θ)

with parameter θ,∞ < θ <∞ if its density is given by
f(x) = 1

π
· 1

1+(x−θ)2 , −∞ < x <∞

Proof. E(Xn) does not exist for n ∈ Z+

E(X) =
∫∞
−∞ x · f(x) dx =∞−∞ (undefined)

06. JOINTLY DISTRIBUTED RANDOM VARIABLES
Joint Distribution Function

the joint cumulative distribution function of the pair of r.v. X and Y is→
F (x, y) = P (X ≤ x, Y ≤ y), −∞ < x <∞, −∞ < y <∞

N1 - marginal cdf ofX , FX(x) = lim
y→∞

F (x, y).

N2 - marginal cdf of Y , FY (y) = lim
x→∞

F (x, y).

N3 - P (X > a, Y > b) = 1− FX(a)− FY (b) + F (a, b)
N4 - P (a1 < X ≤ a2, b1 < Y ≤ b2)

= F (a2, b2) + F (a1, b1)− F (a1, b2)− F (a2, b1)

Joint Probability Mass Function
ifX and Y are both discrete r.v., then their joint pmf is defined by

p(i, j) = P (X = i, Y = j)

N1 - marginal pmf ofX , P (X = i) =
∑
j P (X = i, Y = j)

N2 - marginal pmf of Y , P (Y = i) =
∑
i P (X = i, Y = j)

Joint Probability Density Function
the r.v. X and Y are said to be jointly continuous if there is a function f(x, y) called
the joint pdf, such that for any two-dimensional set C,

P [(X,Y ) ∈ C] =
∫∫
C

f(x, y) dx dy

= volume under the surface over the region C.

N1 - if C = {(x, y) : x ∈ A, y ∈ B}, then
P (X ∈ A, Y ∈ B) =

∫
B

∫
A

f(x, y) dx dy

N2 - F (a, b) = P
(
X ∈ (−∞, a], Y ∈ (−∞, b]

)
=

b∫
−∞

a∫
−∞

f(x, y) dx dy

for double integral: when integrating dx, take y as a constant
N3 - f(a, b) = δ2

δaδb
F (a, b)

interpretation of pdf

P (x < X < x+ dx) =

∫ x+dx

x
f(y) dy

≈ f(x) dx

pdf at x, f(x) ≈ P (x<X<x+dx)
dx

N4 - pdf ofX , fX(x) =
∫∞
0 f(x, y) dy

N5 - pdf of Y , fY (y) =
∫∞
0 f(x, y) dx

interpretation of joint pdf

P (a < X < a+ da, b < Y < b+ db)

=
∫ b+db
b

∫ a+da
a f(x, y) dx dy

≈ f(a, b) da db (density of probability)
marginal pdf ofX , fX(x) =

∫∞
−∞ f(x, y) dy

marginal pdf of Y , fY (x) =
∫∞
−∞ f(x, y) dx

how to do a double integral

e.g. find P (X < Y ) where the joint pdf ofX and Y are given by

f(x, y) =

{
2e−xe−y , 0 < x <∞, 0 < y <∞
0, otherwise

1. to get the bounds for dx and dy, plotX < Y
1.1. draw horizontal lines to determine the bounds for x, from x = a to x = b
1.2. draw vertical lines to determine the bounds for y, from y = c to y = d

2. integrate
∫ d
c

∫ b
a f(x) dx dy

example - given the joint pdf ofX and Y , find
the pdf of r.v. X/Y .

ans. set dummy variable W = X/Y , then
FW (w) = P (W ≤ w) = P (X

Y
≤ w)

P (X
Y
≤ w) =

∫∞
0

∫ wy
0 e−x−y dx dy

Independent Random Variables
N1 -X and Y are independent →
P (X ∈ A, Y ∈ B) = P (X ∈ A) · P (Y ∈ B)

N2 -X and Y are independent → ∀a, b,
P (X ≤ a, Y ≤ b) = P (X ≤ a) · P (Y ≤ b)
or F (a, b) = FX(a) · FY (b) ⇒ joint cdf is the product of the marginal cdfs

N3 - discrete case: discrete r.v. X and Y are independent ⇐⇒
P (X = x, Y = y) = P (X = x) · P (Y = y) for all x, y.

N4 - continuous case: jointly continuous r.v. X and Y are independent ⇐⇒
f(x, y) = fX(x) · fY (y) for all x, y.

N5 - independence is a symmetric relation→X is independent of Y ⇐⇒ Y is
independent ofX

Sum of Independent Random Variables
N1 - for independent, continuous r.v. X and Y having pdf fX and fY ,

FX+Y (a) =
∫∞
−∞ FX(a− y)fY (y) dy

fX+Y (a) =
∫∞
−∞ fX(a− y)fY (y) dy

impt example - E52 (pdf ofX + Y )

Distribution of Sums of Independent r.v.

for i = 1, 2, . . . , n,

1. Xi ∼ Gamma(ti, λ)⇒
n∑
i=1

Xi ∼ Gamma(
n∑
i=1

ti, λ)

2. Xi ∼ Exp(λ)⇒
n∑
i=1

Xi ∼ Gamma(n, λ)

3. Zi ∼ N(0, 1)⇒
n∑
i=1

z2
i ∼ χ2

n = Gamma(n
2
, 1

2
)

4. Xi ∼ N(µi, σ
2
i )⇒

n∑
i=1

Xi ∼ N(
n∑
i=1

µi,
n∑
i=1

σ2
i )

5. X ∼ Poisson(λ1), Y ∼ Poisson(λ2)⇒ X + Y ∼ Poisson(λ1 + λ2)
6. X ∼ Binom(n, p), Y ∼ Binom(m, p)⇒ X + Y ∼ Binom(n+m, p)



Conditional Distribution (discrete)
for discrete r.v. X and Y , the conditional pmf ofX given that Y = y is

PX|Y (x|y) = P (X = x|Y = y) =
P (X=x,Y=y)
P (Y=y)

=
p(x,y)
pY (y)

for discrete r.v. X and Y , the conditional pdf ofX given that Y = y is
FX|Y (x|y) = P (X ≤ x|Y = y) =

∑
a≤x

P (X=a,Y=y)
P (Y=y)

=
∑
a≤x

PX|Y (a|y)

N0 - equivalent notation:
• PX|Y (x|y) = P (X = x|Y = y)
• PX(x) = P (X = x)
N1 - ifX is independent of Y , then PX|Y (x|y) = PX(x)

Conditional Distribution (continuous)
forX and Y with joint pdf f(x, y), the conditional pdf ofX given that Y = y is

fX|Y (x|y) =
f(x,y)
fY (y)

for all y s.t. fY (y) > 0

fX|Y (a|y) = P (X ≤ a|Y = y) =
a∫
−∞

fX|Y (x|y) dx

N1 - for any set A, P (X ∈ A|Y = y) =
∫
A

fX|Y (x|y) dy

N2 - ifX is independent of Y , then fX|Y (x|y) = fX(x).
! "find the marginal/conditional pdf of Y "⇒ must include the range too!!
(see Ex. 69(b, c))

Joint Probability Distribution of Functions of r.v.
LetX1 andX2 be jointly continuous r.v. with joint pdf fx1,x2 (x1, x2). Suppose
Y1 = g1(X1, X2) and Y2 = g2(X1, X2) satisfy
1. the equations y1 = g1(X1, X2) and y2 = g2(X1, X2) can be uniquely

solved for x1, x2 in terms of y1 and y2

2. g1(x1, x2) and g2(x1, x2) have continuous partial derivatives at all points

(x1, x2) such that J(x1, x2) =

∣∣∣∣∣
δg1
δx1

δg1
δx2

δg2
δx1

δg2
δx2

∣∣∣∣∣ = δg1
δx1
· δg2
δx2
− δg2
δx1
· δg1
δx2
6= 0

then
fY1,Y2

(y1, y2) = fX1,X2
(x1, x2) 1

|J(x1,x2)|
where x1 = h1(y1, y2), x2 = h2(y1, y2)

07. PROPERTIES OF EXPECTATION
recap:
• for a discrete r.v. X , E(X) =

∑
x x · p(x) =

∑
x ·P (X = x)

• for a continuous r.v. X , E(X) =
∫∞
−∞ x · f(x) dx

• for a non-negative integer-valued r.v. Y , E(Y ) =
∑∞
i=1 P (Y ≥ i)

• for a non-negative r.v. Y , E(Y ) =
∫∞
−∞ P (Y > y) dy

Expectations of Sums of Random Variables
forX and Y with joint pmf p(x, y) and joint pdf f(x, y),

E[g(x, y)] =
∑
y

∑
x
g(x, y)p(x, y)

E[g(x, y)] =
∫∞
−∞

∫∞
−∞ g(x, y)f(x, y) dx dy

N2 - if P (a ≤ X ≤ b) = 1, then a ≤ E(X) ≤ b
N3 - if E(X) and E(Y ) are finite, E(X + Y ) = E(X) + E(Y )

Proof. using N1, integrate
∫∞
−∞

∫∞
−∞(x+ y)f(x, y) dx dy

=
∫∞
−∞ x · fX(x) dx+

∫∞
−∞ yfY (y) dy = E(X) + E(Y )

N4 - if, for r.v.sX and Y , ifX ≥ Y , then E(X) ≥ E(Y )
N5 - letX1, . . . , Xn be independent and identically distributed r.v.s having
distribution P (Xi ≤ x) = F (x) and expected value E(Xi) = µ.

if X̄ =
n∑
i=1

Xi
n

, then E(X̄) = µ

Proof. E(X̄) = E(
n∑
i=1

Xi
n

) = 1
n

(
n∑
i=1

E(Xi)) = 1
n
· nµ = µ

⇒ sample mean = population mean

N6 - X̄ is the sample mean.
N7 - ifX ∼ Binom(n, p), then E(X) = np.

Proof. expressX as a sum of Bernoulli r.v. ⇒ sum of indicator r.v. = np.

examples

! trick: express a r.v. as a sum of r.v. with easier to find expectation
• negative binomial = sum of geometric = k/p
• hypergeometric with r red balls out ofN balls with n trials

• indicator r.v. = 1 if the ith ball selected is red
• P (Yi = 1) = r

N
⇒ E(Yi) = r

N
⇒ E(X) =

∑n
i=1 Yi = n r

N
• hat throwing problem: expected number of people that select their own hat

• P(select your own hat back) = 1
N
⇒ E(X) = N · 1

N
= 1

• coupon collector problem:
• letX = number of coupons collected for a complete set
• letXi = number of additional coupons that need to be collected to obtain
another distinct type after i distinct types have been collected

• Xi ∼ Geometric(p = N−i
N

)

• E(X) =
∑N−1
i=1 E(Xi) = 1 + 1

N−1
N

+ 1
N−2
N

+ · · ·+ 1
1
N

= N( 1
N

+ 1
N−1

+ · · ·+ 1)

Covariance, Variance of Sums and Correlations
ifX and Y are independent, then for any functions h and g,

E[g(X)h(Y )] = E[g(X)] · E[h(Y )]

covariance → measure of linear relationship

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])]
Cov(X,Y ) = E(XY )− E(X)E(Y )

N1 -X and Y are independent⇒ Cov(X,Y ) = 0

N2 - Cov(X,Y ) = 0 6⇒X and Y are independent

Proof. let E(X) = 0, E(XY ) = 0⇒ Cov(X,Y ) = 0, but not independent
e.g. non-linear relationship

Covariance properties
1. Cov(X,Y ) = Cov(Y,X)
2. Cov(X,X) = V ar(X)
3. Cov(aX, Y ) = aCov(X,Y )

4. Cov(
n∑
i=1

Xi,
m∑
j=1

Yj) =
n∑
i=1

m∑
j−1

Cov(Xi, Yj)

for variance:

N1 - V ar(
n∑
i=1

Xi)−
n∑
i=1

V ar(Xi) + 2
∑∑
i<j

Cov(Xi, Xj)

N2 - ifX1, . . . , Xn are pairwise independent (Xi, Xj are independent ∀i 6= j),

then V ar(
n∑
i=1

Xi) =
n∑
i=1

V ar(Xi)

N3 - for n independent and identically distributed r.v. with expected value µ and
variance σ2,

X̄ = 1
n

n∑
i=1

xi S2 1
n−1

n∑
i=1

(xi − x̄)2

V ar(X̄) = σ2

n
E(S2) = σ2

⇒ S2 is an unbiased estimator for σ2.

Correlation
correlation of two r.v. X and Y , ρ(X,Y ) =

Cov(X,Y )√
V ar(X)·V ar(Y )

N1 - −1 ≤ ρ(X,Y ) ≤ 1 where −1 and 1 denote a perfect negative and positive
linear relationship respectively.
N2 - ρ(X,Y ) = 0⇒ no linear relationship - uncorrelated
N3 - ρ(X,Y ) = 1⇒ Y = aX + b, a = δy

δx
> 0

N4 for events A and B with indicator r.v. IA and IB , then Cov(IA, IB) = 0 when
they are independent events.
N5 - deviation is not correlated with the sample mean. For independent & identically
distributed r.v. X1, X2, . . . , Xn with variance σ2, then Cov(Xi − X̄, X̄) = 0.
Proof. Cov(Xi − X̄, X̄) = Cov(Xi, X̄)− Cov(X̄, X̄)

= Cov(Xi,
1
n

∑n
j=1Xj)− V ar(X̄)

= 1
n

∑n
j=1 Cov(Xi, Xj)− V ar(X̄)

= 1
n
Cov(Xi, Xi)− σ2

n
since ∀i 6= j, Cov(xi, xj) = 0

= 1
n
V ar(xi)− σ2

n
= 0

Conditional Expectation
the conditional expectation ofX ,
given that Y = y, for all values of y such that PY (y) > 0 is defined by

E[X|Y = y] =
∑
x
x · P (X = x|Y = y) =

∑
x
x · pX|Y (x|y)

E(X|Y = y) =
∞∫
−∞

fX|Y (x|y) dx =
∞∫
−∞

f(x,y)
fY (y)

dx

! note the range for fX|Y (x|y)

N1 - IfX,Y ∼ Geometric(p),
then P (X = i|X + Y = n) = 1

n−1
, a uniform distribution.

N2 - E(X|X + Y = n) =
∑n−1
i=1 i · P (X = i|X + Y = n) = n

2

Conditional expectations also satisfy properties of ordinary expectations.
⇒ an ordinary expectation on a reduced sample space consisting only of outcomes
for which Y = y

discrete case: E[g(x)|Y = y] =
∑
x
g(x)PX|Y (x|y)

continuous case: E[g(x)|Y = y] =
∫∞
−∞ g(x)fX|Y (x|y)

then E(X) = Ew.r.t. y(Ew.r.t. X|Y=y(X|Y ))

Deriving Expectation
E(X) = EY (EX(X|Y ))

discrete case: E(X) =
∑
y
E(X|Y = y)P (Y = y)

continuous case: E(X) =
∫∞
−∞ E(X|Y = y)fY (y) dy

N3 - 3 methods for finding E(X) given f(x, y)
1. using E(g(x, y)) =

∫∞
−∞

∫∞
−∞ g(x, y)f(x, y) dx dy ⇒ let g(x, y) = x

2. using E(X) =
∫∞
−∞ xfX(x) dx

3. using E(X) =
∫∞
−∞ E(X|Y = y)fY (y) dy

N4 - E(
N∑
i=1

Xi) = EN (E(
N∑
i=1

Xi|N)) =
∞∑
n=0

E(
N∑
i=1

Xi|N = n) · P (N = n)

Computing Probabilities by Conditioning
P (E) =

∑
y
P (E|Y = y)P (Y = y) if Y is discrete

P (E) =
∞∫
−∞

P (E|Y = y)fY (y) dy if Y is continuous

Proof. letX be an indicator r.v. for E. ⇒ E(X) = P (E)

E(X|Y = y) = P (X = 1|Y = y) = P (E|Y = y)

N5 - find P ((X,Y ) ∈ C) given f(x, y): see p.57
also: P (X < Y ) =

∫
P (X < Y |Y = y) · fY (y)



Conditional Variance
V ar(X|Y ) = E[(X − E(X|Y ))2 | Y ]
V ar(X|Y ) = E(X2|Y )− [E(X|Y )]2

N6 - V ar(X) = E[V ar(X|Y )] + V ar[E(X|Y )]

N7 - E(f(Y )) = E(f(Y )|Y = t) = E(f(y)|Y = t)
= E(f(t)) ifN(t) and Y are independent

Moment Generating Functions
moment generating functionM(t) of the r.v. X →

M(t) = E(etX) for all real values of t
• ifX is discrete with pmf p(x), M(t) =

∑
x e

tx · p(x)
• ifX is continuous with pdf f(x), M(t) =

∫∞
−∞ etxf(x) dx

M(t) is called the mgf because all moments of X can be obtained by successively
differentiatingM(t) and then evaluating the result at t = 0.
(M ′(0) = E(X),M ′′(0) = E(X2), etc)
in general,
• M ′(t) = E(XnetX), n ≥ 1
• Mn(0) = E(Xn), n ≥ 1

N8 - binomial expansion: (a+ b)n =
n∑
i=0

(n
i

)
aibn−i

(see other series for useful expansions on other distributions)
N9 - integrating over a pdf from∞ to −∞ always gives 1

ifX and Y are independent and have mgf’sMX(t) andMY (t) respectively,
N10 - the mgf ofX + Y isMX+Y (t) = MX(t) ·MY (t)

Proof. MX+Y (t) = E[et(X+Y )] = E[etX · etY ] = E(etX)E(etY )
= MX(t) ·MY (t)

N11 - ifMX(t) exists and is finite in some region about t = 0, then the distribution
ofX is uniquely determined. MX(t) = MY (t) ⇐⇒ X = Y

Common mgf’s

• X ∼ Normal(0, 1), M(t) = ee
2/2

• X ∼ Binomial(n, p), M(t) = (pet + (1− p))n
• X ∼ Poisson(λ), M(t) exp[λ(et − 1)]
• X ∼ Exp(λ), M(t) = λ

λ−t

08. LIMIT THEOREMS
Markov’s Inequality → ifX is a non-negative r.v., for any a > 0,
P (X ≥ a) ≤ E(x)

a
.

Proof. let I be an indicator r.v. = 1 whenX ≥ a.

Then I ≤ X
a
, and E(I) ≤ E(X)

a
, and P (X ≥ a) ≤ E(X)

a
.

Chebyshev’s inequality → ifX is an r.v. with finite mean µ and variance σ2, then
for any value of k > 0, P (|X − µ| ≥ k) ≤ σ2

k2
.

Proof. P [(X − µ)2 ≥ k2] ≤ E[(X−µ)2]

k2
by Markov’s inequality

Since (X − µ)2 ≥ k2 ⇐⇒ |X − µ| ≥ k, then P (|X − µ| ≥ k) ≤ σ2

k2

N1 - if V ar(X) = 0, then P (X = E[X]) = 1

Proof. let µ = E[X]. by Chebyshev’s inequality, for any n ≥ 1,
P (|X − µ| > 1

n
) ≤ V ar(X)

( 1
n

)2
= 0

then P (X 6= µ) = 0⇒ P (X = µ) = 1

weak law of large numbers → letX1, X2, . . . be a sequence of independent and
identically distributed r.v.s, each with finite mean E[Xi] = µ. Then, for any ε > 0,
P{|X1+···+Xn

n
− µ| ≥ ε} → 0 as n→∞

central limit theorem → letX1, X2, . . . be a sequence of independent and
identically distributed r.v.s each having mean µ and variance σ2. Then the
distribution of X1+···+Xn−nµ

σ
√
n

tends to the standard normal as n→∞.

• aka: x̄−µ
σ/
√
n
→ z ∼ N(0, 1)

• for −∞ < a <∞,
P (X1+···+Xn−nµ

σ
√
n

≤ a)→ 1√
2π

∫ a
−∞ e−x

2/2 dx = F (a) (cdf of standard
normal) as n→∞

N2 - Let Z1, Z2, . . . be a sequence of r.v.s with distribution functions FZn and
moment generating functionsMZn , n ≥ 1. Let Z be a r.v. with distribution function
FZ and mgfMZ .
IfMZn (t)→MZ(t) for all t, then FZn (t)→ FZ(t) for all t at which FZ(t) is
continuous.
strong law of large numbers → letX1, X2, . . . be a sequence of independent
and identically distribution r.v.s, each having finite mean µ = E[Xi].
Then, with probability 1, X1+···+Xn

n
→ µ as n→∞



commutative E ∪ F = F ∪ E E ∩ F = F ∩ E
associative (E ∪ F ) ∪G = E ∪ (F ∪G) (E ∩ F ) ∩G = E ∩ (F ∩G)
distributive (E ∪ F ) ∩G = (E ∩ F ) ∪ (F ∩G) (E ∩ F ) ∪G = (E ∪ F ) ∩ (F ∪G)

DeMorgan’s (
n⋃
i=1

Ei)
c =

n⋂
i=1

Eci (
n⋂
i=1

Ei)
c =

n⋃
i=1

Eci


	01. COMBINATORIAL ANALYSIS
	The Basic Principle of Counting
	Permutations
	Combinations
	Multinomial Coefficients
	Number of Integer Solutions of Equations

	02. AXIOMS OF PROBABILITY
	Sample Space and Events
	DeMorgan's Laws

	Axioms of Probability
	definition 1: relative frequency
	definition 2: Axioms

	Simple Propositions
	Sample Space having Equally Likely Outcomes

	03. CONDITIONAL PROBABILITY AND INDEPENDENCE
	Conditional Probability
	Total Probability & Bayes' Theorem
	Total Probabililty
	Bayes Theorem

	Independent Events

	04. RANDOM VARIABLES
	Types of Random Variables
	Summary
	Properties
	Coupon Collector Problem

	Probability Mass Function
	Cumulative Distribution Function
	Expected Value
	finding expectation of f(x)

	Variance
	Poisson Random Variable
	Mean and Variance

	Poisson distribution as random events
	o(h) notation

	Expected Value of sum of r.v.
	examples

	05. CONTINUOUS RANDOM VARIABLES
	Generating a Uniform r.v.
	Expectation & Variance
	expectation
	variance
	example

	Uniform Random Variable
	Normal Random Variable
	Normal Approximation to the Binomial Distribution

	Exponential Random Variable
	Gamma Distribution
	Beta Distribution
	Cauchy Distribution

	06. JOINTLY DISTRIBUTED RANDOM VARIABLES
	Joint Distribution Function
	Joint Probability Mass Function
	Joint Probability Density Function
	interpretation of pdf
	interpretation of joint pdf
	how to do a double integral

	Independent Random Variables
	Sum of Independent Random Variables
	Distribution of Sums of Independent r.v.
	Conditional Distribution (discrete)
	Conditional Distribution (continuous)

	Joint Probability Distribution of Functions of r.v.

	07. PROPERTIES OF EXPECTATION
	Expectations of Sums of Random Variables
	examples

	Covariance, Variance of Sums and Correlations
	Covariance properties
	Correlation

	Conditional Expectation
	Deriving Expectation
	Computing Probabilities by Conditioning
	Conditional Variance

	Moment Generating Functions
	Common mgf's


	08. LIMIT THEOREMS

