ST2131 AY21/22 SEM 2

github/jovyntls

01. COMBINATORIAL ANALYSIS

tricky - E18, E20-22, E23, E26

The Basic Principle of Counting

• **combinatorial analysis** \rightarrow the mathematical theory of counting

• **basic principle of counting** \rightarrow Suppose that two experiments are performed. If exp1 can result in any one of m possible outcomes and if, for each outcome of exp1, there are n possible outcomes of exp2, then together there are mn possible outcomes of the two experiments.

generalized basic principle of counting \rightarrow If r experiments are performed such that the first one may result in any of n_1 possible outcomes and if for each of these n_1 possible outcomes, there are n_2 possible outcomes of the 2nd exp, and if ..., then there is a total of $n_1 \cdot n_2 \cdot \cdots \cdot n_r$ possible outcomes of r experiments.

Permutations

factorials - 1! = 0! = 1

N1 - if we know how to count the number of different ways that an event can occur, we will know the probability of the event.

N2 - there are n! different arrangements for n objects.

N3 - there are $\frac{n!}{n_1! n_2! \dots n_r!}$ different arrangements of n objects, of which n_1 are alike, n_2 are alike, ..., n_r are alike.

Combinations

N4 - $\binom{n}{r} = \frac{n!}{(n-r)! r!}$ represents the number of different groups of size r that could be selected from a set of n objects when the order of selection is not considered relevant.

N4b -
$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}, \quad 1 \le r \le n$$

Proof. If object 1 is chosen $\Rightarrow \binom{n-1}{r-1}$ ways of choosing the remaining objects.

If object 1 is not chosen $\Rightarrow {n-1 \choose r}$ ways of choosing the remaining objects.

N5 - The Binomial Theorem - $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$

Proof. by mathematical induction: n = 1 is true; expand; sub dummy variable; combine using N4b; combine back to final term

Multinomial Coefficients

 $\begin{array}{l} \mathbf{N6} \cdot \binom{n}{n_1, n_2, \ldots, n_r} = \frac{n!}{n_1! n_2! \ldots n_r!} \text{ represents the number of possible divisions of } \\ n \text{ distinct objects into } r \text{ distinct groups of respective sizes } n_1, n_2, \ldots, n_3, \text{ where } \\ n_1 + n_2 + \cdots + n_r = n \end{array}$

Proof. using basic counting principle,

$$= \binom{n}{n_1} \binom{n-n_1}{n_2} \binom{n-n_1-n_2}{n_3} \dots \binom{n-n_1-n_2-n_{r-1}}{n_r} \\= \frac{n!}{(n-n_1)!n_1!} \times \frac{(n-n_1)!}{(n-n_1-n_2)!n_2!} \times \dots \times \frac{(n-n_1-n_2-\dots-n_{r-1})}{0!n_r!} \\= \frac{n!}{n_1!n_2!\dots n_r!}$$

N7 - The Multinomial Theorem:
$$(x_1 + x_2 + \dots + x_r)^n$$

= $\sum_{n_1 = 1}^{n_1 = 1} \frac{n!}{n_1! n_2! \dots n_r!} x_1^{n_1} x_2^{n_2} \dots x_r^{n_r}$

$(n_1,...,n_r):n_1+n_2+\cdots+n_r=n^{n_1+n_2}$

Number of Integer Solutions of Equations

N8 - there are $\binom{n-1}{r-1}$ distinct *positive* integer-valued vectors (x_1, x_2, \ldots, x_r) satisfying $x_1 + x_2 + \cdots + x_r = n$, $x_i > 0$, $i = 1, 2, \ldots, r$! cannot be directly applied to *N8* as 0 value is not included **N9** - there are $\binom{n+r-1}{r-1}$ distinct *non-negative* integer-valued vectors (x_1, x_2, \ldots, x_r) satisfying $x_1 + x_2 + \cdots + x_r = n$ *Proof.* let $y_k = x_k + 1 \Rightarrow y_1 + y_2 + \cdots + y_r = n + r$

02. AXIOMS OF PROBABILITY

Sample Space and Events

- sample space \rightarrow The set of all outcomes of an experiment (where outcomes are not predictable with certainty)
- **event** \rightarrow Any *subset* of the sample space
- **union** of events E and $F \to E \cup F$ is the event that contains all outcomes that are either in E or F (or both).
- **intersection** of events *E* and $F \rightarrow E \cap F$ or *EF* is the event that contains all outcomes that are both in *E* and in *F*.
- **complement** of $E \to E^c$ is the event that contains all outcomes that are *not* in E.
- **subset** $\rightarrow E \subset F$ is all of the outcomes in E that are also in F. • $E \subset F \land F \subset E \Rightarrow E = F$

DeMorgan's Laws

$$(\bigcup_{i=1}^{n} \mathbf{E}_{i})^{\mathbf{c}} = \bigcap_{i=1}^{n} \mathbf{E}_{i}$$

 $\begin{array}{l} \textit{Proof. to show LHS} \subset \textit{RHS: let } x \in (\bigcup_{i=1}^n E_i)^c \\ \Rightarrow x \notin \bigcup_{i=1}^n E_i \Rightarrow x \notin E_1 \text{ and } x \notin E_2 \dots \text{ and } x \notin E_n \\ \Rightarrow x \in E_1^c \text{ and } x \in E_2^c \dots \text{ and } x \in E_n^c \\ \Rightarrow x \in \bigcap_{i=1}^n E_i^c \\ \textit{to show RHS} \subset \textit{LHS: let } x \in \bigcap_{i=1}^n E_i^c \end{array}$

 $(\bigcap_{i=1}^{n} \mathbf{E}_{i})^{\mathbf{c}} = \bigcup_{i=1}^{n} \mathbf{E}_{i}^{\mathbf{c}}$

Proof. using the first law of DeMorgan, negate LHS to get RHS

Axioms of Probability

definition 1: relative frequency

$$P(E) = \lim_{n \to \infty} \frac{n(E)}{n}$$

problems with this definition:

1. $\frac{n(E)}{n}$ may not converge when $n \to \infty$

2. $\frac{n(E)}{n}$ may not converge to the same value if the experiment is repeated

definition 2: Axioms

Consider an experiment with sample space S. For each event E of the sample space S, we assume that a number P(E) is defined and satisfies the following 3 axioms:

1. $0 \le P(E) \le 1$

2. P(S) = 1

3. For any sequence of mutually exclusive events E_1, E_2, \ldots (i.e., events for which $E_i E_j = \emptyset$ when $i \neq j$),

$$P(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} P(E_i)$$

P(E) is the probability of event E.

Simple Propositions

 $\begin{aligned} \mathbf{N1} &- P(\emptyset) &= 0\\ \mathbf{N2} &- P(\bigcup_{i=1}^{n} E_i) &= \sum_{i=1}^{n} P(E_i) \end{aligned} \text{ (aka axiom 3 for a finite } n) \end{aligned}$

N3 - strong law of large numbers - if an experiment is repeated over and over again, then with probability 1, the proportion of time during which any specific event E occurs will be equal to P(E).

N6 - the definitions of probability are mathematical definitions. They tell us which se functions can be called **probability functions**. They do not tell us what value a probability function $P(\cdot)$ assigns to a given event E.

probability function \iff it satisfies the 3 axioms.

 $\begin{array}{|c|c|c|c|} \mathbf{N7} & - P(E_c) = 1 - P(E) \\ \mathbf{N8} & - \text{ if } E \subset F, \text{ then } P(E) \leq P(F) \\ \mathbf{N9} & - P(E \cup F) = P(E) + P(F) - P(E \cap F) \\ \mathbf{N10} & - \text{ Inclusion-Exclusion identity where } n = 3 \\ P(E \cup F \cup G) = P(E) + P(F) + P(G) \\ \end{array}$

$$-P(EF) - P(EG) - P(FG)$$

$$+ P(EFG)$$

N11 - Inclusion-Exclusion identity -

$$P(E_1 \cup E_2 \cup \dots \cup E_n) = \sum_{i=1}^n P(E_i) - \sum_{i_1 < i_2} P(E_{i_1} E_{i_2}) + \dots + (-1)^{r+1} \sum_{i_1 < i_2 < \dots < i_r} P(E_{i_1} E_{i_2} \dots E_{i_r}) + \dots$$

$$+ (-1)^{n+1} P(E_1 E_2 \dots E_n)$$

Proof. Suppose an outcome with probability ω is in exactly m of the events E_i , where m > 0. Then LHS: the outcome is in $E_1 \cup E_2 \cup \cdots \cup E_n$ and ω will be counted once in $P(E_1 \cup E_2 \cup \cdots \cup E_n)$ RHS:

- the outcome is in exactly m of the events E_i and ω will be counted exactly $\binom{m}{1}$ times in $\sum\limits_{i=1}^n P(E_i)$
- the outcome is contained in $\binom{m}{2}$ subsets of the type $E_{i_1}E_{i_2}$ and ω will be counted $\binom{m}{2}$ times in $\sum_{i_2} P(E_{i_1}E_{i_2})$

• ... and so on
hence RHS =
$$\binom{m}{1}\omega - \binom{m}{2}\omega + \binom{m}{3}\omega - \dots \pm \binom{m}{m}\omega$$

= $\omega \sum_{i=0}^{m} \binom{m}{i}(-1)^{i}$ = binomial theorem where $x = -1, y = 0$
= $0 = \text{LHS}$

e.g. For an outcome with probability ω and n=3

• Case 1. $w = P(E_1E_2)$ LHS = ω RHS = $(\omega + \omega + 0) - (\omega + 0 + 0) + 0 = \omega$ • Case 2. $\omega = P(E_1 \cap E_2 \cap E_3)$ LHS = ω RHS = $(\omega + \omega + \omega) - (\omega + \omega + \omega) + \omega = \omega$

N12 -

(i)
$$P(\bigcup_{i=1}^{n} E_i) \leq \sum_{i=1}^{n} P(E_i)$$

(ii) $P(\bigcup_{i=1}^{n} E_i) \geq \sum_{i=1}^{n} P(E_i) - \sum_{j < i} P(E_iE_j)$
(iii) $P(\bigcup_{i=1}^{n} E_i) \leq \sum_{i=1}^{n} P(E_i) - \sum_{j < i} P(E_iE_j) + \sum_{k < j < i} P(E_iE_jE_k)$
(iv) and so on.

Proof.
$$\bigcup_{i=1}^{n} E_i = E_1 \cup E_1^c E_2 \cup E_1^c E_2^c E_3 \cup \dots \cup E_1^c E_2^c \dots E_{n-1}^c E_n$$
$$P(\bigcup_{i=1}^{n} E_i) = P(E_1) + P(E_1^c E_2) + P(E_1^c E_2^c E_3) + \dots + P(E_1^c E_2^c \dots E_{n-1}^c E_n)$$

Sample Space having Equally Likely Outcomes

tricky - 14, 15, 16, 18, 19, 20 Consider an experiment with sample space $S = \{e_1, e_2, \ldots, e_n\}$. Then $P(\{e_1\}) = P(\{e_2\}) = \cdots = P(\{e_n\}) = \frac{1}{n}$ or $P(\{e_i\}) = \frac{1}{n}$. N1 - for any event E, $P(E) = \frac{\# \text{ of outcomes in } E}{\# \text{ of outcomes in } S} = \frac{\# \text{ of outcomes in } E}{n}$ increasing sequence of events $\{E_n, n \ge 1\} \rightarrow E_1 \subset E_2 \subset \cdots \subset E_n \subset E_{n+1} \subset \cdots$

$\lim_{n \to \infty} E_n = \bigcup_{i=1}^{\infty} E_i$ decreasing sequence of events $\{E_n, n \ge 1\} \rightarrow E_1 \supset E_2 \supset \cdots \supset E_n \supset E_{n+1} \supset \cdots$ $\lim_{n \to \infty} E_n = \bigcap_{i=1}^{\infty} E_i$

03. CONDITIONAL PROBABILITY AND INDEPENDENCE

tricky - E6, urns (p.37)

Conditional Probability

$$\begin{split} & \operatorname{N1} \operatorname{-if} P(F) > 0. \text{ then } P(E|F) = \frac{P(E \cap F)}{P(F)} \\ & \operatorname{N2} \operatorname{-multiplication rule} \operatorname{-} P(E_1 E_2 \ldots E_n) = \\ & P(E_1) P(E_2|E_1) P(E_3|E_1 E_2) \ldots P(E_n|E_1 E_2 \ldots E_{n-1}) \\ & \operatorname{N3} \operatorname{-axioms} \text{ of probability apply to conditional probability} \\ & \operatorname{1.} 0 \leq P(E|F) \leq 1 \\ & \operatorname{2.} P(S|F) = 1 \text{ where } S \text{ is the sample space} \\ & \operatorname{3.} \text{ If } E_i \ (i \in \mathbb{Z}_{\geq 1}) \text{ are mutually exclusive events, then} \\ & P(\bigcup_{i=1}^{\infty} E_i|F) = \sum_{i=1}^{\infty} P(E_i|F) \end{split}$$

N4 - If we define Q(E) = P(E|F), then Q(E) can be regarded as a probability function on the events of *S*, hence all results previously proved for probabilities apply. • $Q(E_1 \cup E_2) = Q(E_1) + Q(E_2) - Q(E_1E_2)$

• $P(E_1 \cup E_2|F) = P(E_1|F) + P(E_2|F) - P(E_1E_2|F)$

Total Probability & Bayes' Theorem

conditioning formula - $P(E) = P(E|F)P(F) + P(E|F^c)P(F^c)$ tree diagram -

$$\begin{array}{c} \begin{array}{c} P(F) & F & \stackrel{P(E|F)}{\longrightarrow} E \\ \hline P(F^c) & F^c & P(F|E) = \frac{P(EF)}{P(E)} = \frac{P(F) \cdot P(E|F)}{P(E)} \\ \hline P(F^c) & F^c & P(F^c|E) = \frac{P(EF^c)}{P(E)} = \frac{P(F^c) \cdot P(E|F^c)}{P(E)} \\ \end{array}$$

Total Probabililty

theorem of total probability - Suppose F_1, F_2, \ldots, F_n are mutually exclusive events such that $\bigcup_{i=1}^n F_i = S$, then $P(E) = \sum_{i=1}^n P(EF_i) = \sum_{i=1}^n P(F_i)P(E|F_i)$

Bayes Theorem

$$P(F_{j}|E) = \frac{P(EF_{j})}{P(E)} = \frac{P(F_{j})P(E|F_{j})}{\sum_{i=1}^{n} P(F_{i})P(E|F_{i})}$$

application of bayes' theorem

$P(B_1 \mid A) = \frac{P(A|B_1) \cdot P(B_1)}{P(A|B_1) \cdot P(B_1) + P(A|B_2) \cdot P(B_2)}$

Let A be the event that the person test positive for a disease. B_1 : the person has the disease. B_2 : the person does not have the disease.

true positives: $P(B_1 \mid A)$ false negatfalse positives: $P(A \mid B_2)$ true negati

false negatives: $P(\bar{A} \mid B_1)$ true negatives: $P(\bar{A} \mid B_2)$

Independent Events

N1 - *E* and *F* are independent $\iff P(EF) = P(E) \cdot P(F)$ **N2** - *E* and *F* are independent $\iff P(E|F) = P(E)$ **N3** - if *E* and *F* are independent, then *E* and *F*^c are independent. **N4** - if *E*, *F*, *G* are independent, then *E* will be independent of any event formed from *F* and *G*. (e.g. $F \cup G$) **N5** - if *E*, *F*, *G* are independent, then P(EFG) = P(E)P(F)P(G) **N6** - if *E* and *F* are independent and *E* and *G* are independent, $\Rightarrow E$ and *FG* are independent

N7 - For independent trials with probability p of success, probability of m successes before n failures, for $m, n \ge 1$,

$$n,m = \sum_{k=n}^{n} (k)^{p} (1 p)$$
$$= P(\text{exactly } k \text{ successes in } m + n - 1 \text{ trials})$$

recursive approach to solving probabilities: see page 85 alternative approach

04. RANDOM VARIABLES

- $\textbf{random variable} \rightarrow a$ real-valued function defined on the sample space

Types of Random Variables

• X is a **Bernoulli r.v.** with parameter p if \rightarrow

 $p(x) = \begin{cases} p, & x = 1, \text{ ('success')} \\ 1 - p, & x = 0 \quad \text{('failure')} \end{cases}$

- Y is a Binomial r.v. with parameters n and p → Y = X₁ + X₂ + ··· + X_n where X₁, X₂, ..., X_n are independent Bernoulli r.v.'s with parameter p.
 P(X = k) = {n \choose k} p^k (1 p)^{n-k}
 - P(k successes from n independent trials each with probability p of success)
 - e.g. number of red balls out of n balls drawn with replacement
 - E(Y) = np, Var(Y) = np(1-p)

Negative Binomial → X = number of trials until k successes are obtained
 e.g. number of balls drawn (with replacement) until k red balls are obtained
 Geometric → X = number of trials until a success is obtained

- $P(X = k) = (1 p)^{k-1} \cdot p$ where k is the number of trials needed
- e.g. number of balls drawn (with replacement) until 1 red ball is obtained
- Hypergeometric $\rightarrow X =$ number of trials until success, without replacement

e.g. number of red balls out of n balls drawn without replacement

Summary

binomial	X = # of successes in n trials w/ replacement	np
negative binomial	X = # of trials until k successes	k/p
geometric	X = # of trials until a success	1/p
hypergeometric $X = #$ of successes in n trials, no replacement		rn/N

Properties

$$\begin{split} & \mathsf{N1} \text{ - if } X \sim \mathsf{Binomial}(n,p), \text{ and } Y \sim \mathsf{Binomial}(n-1,p), \\ & \mathsf{then} \qquad E(X^k) = np \cdot E[(Y+1)^{k-1}] \\ & \mathsf{N2} \text{ - if } X \sim \mathsf{Binomial}(n,p), \text{ then for } k \in \mathbb{Z}^+, \\ & P(X=k) = \frac{(n-k+1)p}{k(1-p)} \cdot P(X=k-1) \end{split}$$

Coupon Collector Problem

Q. Suppose there are *N* distinct types of coupons. If *T* denotes the number of coupons needed to be collected for a complete set, what is P(T = n)?

$$\begin{array}{l} \text{A. } P(T>n-1)=P(T\geq n)=P(T=n)+P(T>n)\\ \Rightarrow P(T=n)=P(T>n-1)-P(T>n) \text{ Let}\\ A_{j}=\{\text{no type } j \text{ coupon is contained among the first } n\}\\ P(T>n)=P(\bigcup_{j=1}^{N}A_{j})\\ \text{Using the inclusion-exclusion identity,}\\ P(T>n)=\sum_{j}P(A_{j}) \quad \text{- coupon } j \text{ is not among the first } n \text{ collected}\\ -\sum_{j_{1}}\sum_{j_{2}}P(A_{j_{1}}A_{j_{2}}) \quad \text{- coupon } j_{1} \text{ and } j_{2} \text{ are not the first } n\\ +\cdots +(-1)^{k+1}\sum_{j_{1}}\sum_{j_{2}}\cdots\sum_{j_{k}}P(A_{j_{1}}A_{j_{2}}\cdots A_{j_{n}})+\ldots\\ +(-1)^{N+1}P(A_{1}A_{2}\cdots A_{N})\end{array}$$

$$P(A_{j_1}A_{j_2}\cdots A_{j_n}) = (\frac{N-k}{N})^n$$

Hence $P(T > n) = \sum_{i=1}^{N-1} {N \choose i} {N-1 \choose N}^n (-1)^{i+1}$

Probability Mass Function

- for a discrete r.v., we define the probability mass function (pmf) of X by p(a)=P(X=a)

• cdf,
$$F(a) = \sum p(x)$$
 for all $x \leq a$

- if X assumes one of the values x_1, x_2, \ldots , then $\sum_{i=1}^{\infty} p(x_i) = 1$
- the pmf p(a) is positive for at most a countable number of values of a , $a \mid 1 \quad 2 \quad 4$

e.g.
$$p(a) = \frac{1}{2} = \frac{1}{4} = \frac{1}{4}$$

- discrete variable \rightarrow a random variable that can take on at most a countable number of possible values

Cumulative Distribution Function

• for a r.v. X, the function F defined by $F(x) = P(X \le x), \quad -\infty < x < \infty$, is called the **cumulative distribution function (cdf)** of X.

• aka distribution function

• F(x) is defined on the entire real line

• e.g.
$$F(a) = \begin{cases} 0, & a < 1 \\ \frac{1}{2}, & 1 \le a < 2 \\ \frac{3}{4}, & 2 \le a < 4 \\ 1, & a \ge 4 \end{cases}$$

Expected Value

- aka population mean/sample mean, μ
- if X is a discrete random variable having pmf p(x), the **expectation** or the **expected value** of X is defined as $E(X) = \sum x \cdot p(x)$

N1 - if a and b are constants, then
$$E(aX + b) = aE(X) + b$$

$$\mathbf{N2}$$
 - the n^{th} moment of of X is given as $E(X^n) = \sum_x x^n \cdot p(x)$

•
$$I$$
 is an indicator variable for event A if $I = \begin{cases} 1, & \text{if } A \text{ occurs} \\ 0, & \text{if } A^c \text{ occurs} \end{cases}$. then $E(I) = P(A)$

 $\begin{array}{l} \textit{Proof of N1. } E(aX+b) = \sum_x (aX+b)p(x) \\ = a \cdot \sum_x xp(x) + b \cdot \sum_x p(x) = a \cdot E(X) + b \end{array}$

finding expectation of f(x)

- method 1, using pmf of Y: let Y = f(X). Find corresponding X for each Y.
- method 2, using pmf of X: $E[g(x)] = \sum_i g(x_i)p(x_i)$ • where X is a discrete r.v. that takes on one of the values of x_i with the respective probabilities of $p(x_i)$, and g is any real-valued function g

Variance

If X is a r.v. with mean $\mu = E[X]$, then the variance of X is defined by $Var(X) = E[(X - \mu)^2]$ $= \sum x_i(x_i - \mu)^2 \cdot p(x_i)$ (deviation \cdot weight) $= E(x^2) - [E(x)]^2$ • $Var(aX + b) = a^2 Var(x)$

Poisson Random Variable

a r.v. X is said to be a **Poisson r.v.** with parameter λ if for some $\lambda > 0$,

$$P(X=i) = e^{-\lambda} \cdot \frac{1}{2}$$

• notation: $X \sim \mathsf{Poisson}(\lambda)$ • $\sum_{i=0}^{\infty} P(X=i) = 1$

• Poisson Approximation of Binomial - if $X \sim \text{Binomial}(n, p), n$ is large and p is small, then $X \sim \text{Poisson}(\lambda)$ where $\lambda = np$.

- For n independent trials with probability p of success, the number of successes is approximately a *Poisson r.v.* with parameter $\lambda = np$ if n is large & p is small.
- Poisson approximation remains even when the trials are not independent. provided that their dependence is weak.
- 2 ways to look at the Poisson distribution
 - 1. an approximation to the binomial distribution with large n and small p
 - 2. counting the number of events that occur at random at certain points in time

Mean and Variance

if $X \sim \text{Poisson}(\lambda)$, then $E(X) = \lambda$, $Var(X) = \lambda$

Poisson distribution as random events

Let N(t) be the number of events that occur in time interval [0, t].

N1 - If the 3 assumptions are true, then $N(t) \sim \text{Poisson}(\lambda t)$.

N2 - If λ is the rate of occurrences of events per unit time, then the number of occurrences in an interval of length t has a Poisson distribution with mean λt .

$$P(N(t)=k)=rac{e^{-\lambda t}(\lambda t)^k}{k!}, \mbox{ for } k\in\mathbb{Z}_{\geq 0}$$

o(h) notation

$$o(h)$$
 stands for any function $f(h)$ such that $\lim_{h \to 0} \frac{f(h)}{h} = 0$

• o(h) + o(h) = o(h)• $\frac{\lambda t}{n} + o(\frac{t}{n}) \doteq \frac{\lambda t}{n}$ for large n

Expected Value of sum of r.v.

For a r.v. X, let X(s) denote the value of X when $s \in S$ N1 - $E(x) = \sum_{i} x_i P(X = x_i) = \sum_{s \in S} X(s)p(s)$ where $S_i = \{s : X(s) = x_i\}$ **N2** - $E(\sum_{i=1}^{n}) = \sum_{i=1}^{n} E(X_i)$ for r.v. X_1, X_2, \dots, X_n

examples

Selecting hats problem

Let n be the number of men who select their own hats. Let I_E be an indicator r.v. for E. E_i is the event that the *i*-th man selects his own hat. Let X be the number of men that select their own hats

- $X = I_{E_1} + I_{E_2} + \dots + I_{E_n}$
- $P(E_i) = \frac{1}{n}$
- $P(E_i|E_j) = \frac{1}{n-1} \neq P(E_j)$ for j < i (hence E_i and E_j are not independent) but dependence is weak for large n
- X satisfies the other conditions for binomial r.v., besides independence (n trials with equal probability of success)
- Poisson approximation of $X : X \sim \text{Poisson}(\lambda)$
- $\lambda = n \cdot P(E_i) = n \cdot \frac{1}{n} = 1$

•
$$P(X = i) = \frac{e^{-1}1^i}{i!} = \frac{e^{-1}}{i!}$$

•
$$P(X=0) = e^{i!} \approx 0.37$$

No 2 people have the same birthday

For $\binom{n}{2}$ pairs of individuals *i* and *j*, $i \neq j$, let E_{ij} be the event where they have the same birthday. Let X be the number of pairs with the same birthday.

- $X = I_{E_1} + I_{E_2} + \dots + I_{E_n}$
- Each E_{ii} is only pairwise independent. $P(E_{ii}) = \frac{1}{26\pi}$

• i.e. E_{ii} and E_{mn} are independent

• but
$$E_{12}$$
 and $(E_{13} \cap E_{23})$ are not independent $\Rightarrow P(E_{12}|E_{13} \cap E_{23}) =$

•
$$X \sim \text{Poisson}(\lambda), \lambda = \frac{\binom{n}{2}}{365} = \frac{n(n-1)}{730} \Rightarrow P(X=0) = e^{-\frac{n(n-1)}{730}}$$

• for $P(X=0) < \frac{1}{2}, n > 23$

distribution of time to next event

Q. suppose an accident happens at a rate of 5 per day. Find the distribution of time starting from now, until the next accident.

A. Let
$$X=$$
 time (in days) until the next accident.

Let
$$V =$$
 be the number of accidents during time period $\left[0,t\right]$

$$\begin{split} V &\sim \text{Poisson}(5t) \qquad \Rightarrow P(V=k) = \frac{e^{-5t} \cdot (5t)^{\kappa}}{k!} \\ P(X > t) &= P(\text{no accidents happen during } [0,t]) = P(V=0) = e^{-5t} \\ P(X \leq t) - 1 - e^{-5t} \end{split}$$

05. CONTINUOUS RANDOM VARIABLES

X is a **continuous r.v.** \rightarrow if there exists a nonnegative function f defined for all real

 $x \in (-\infty, \infty)$, such that $P(X \in B) = \int_B f(x) dx$ N1 - $P(X \in (-\infty, \infty)) = \int_{-\infty}^{\infty} f(x) dx = 1$ N2 - $P(a \le X \le b) = \int_a^b f(x) dx$ **N3** - $P(X = a) = \int_{a}^{a} f(x) dx = 0$ **N4** - $P(X < a) = P(X \le a) = \int_{-\infty}^{a} f(x) dx$ N5 - interpretation of probability density function for probability density function

$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) \, dy$$

$$\approx f(x) \cdot dx$$
pdf at $x, f(x) \approx \frac{P(x < X < x + dx)}{dx}$

N6 - if X is a continuous r.v. with pdf f(x) and cdf F(x), then $f(x) = \frac{d}{dx}F(x)$. (Fundamental Theorem of Calculus) N7 - median of X, x occurs where $F(x) = \frac{1}{2}$

Generating a Uniform r.v.

if X is a continuous r.v. with cdf F(x), then • N8 - $F(X) = U \sim uniform(0, 1).$

- *Proof.* let Y = F(X). then cdf of $Y, F_Y(y) =$ $P(Y \le y) = P(F(X) \le y) = P(X \le F^{-1}(y)) = F(F^{-1}(y)) = y.$ hence Y is a uniform r.v.
- N9 $X = F^{-1}(U) \sim \operatorname{cdf} F(x)$. • generating a r.v. from a uniform(0, 1) r.v. and a r.v. with cdf F(x).

Expectation & Variance

expectation

N1 - expectation of
$$X$$
, $E(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx$
N2 - if X is a continuous r.v. with pdf $f(x)$, then for any real-valued function g ,
 $E[g(x)] = \int_{-\infty}^{\infty} g(x)f(x) dx$
N2a $E[aX + b] = \int_{-\infty}^{\infty} (aX + b) \cdot f(x) dx = a \cdot E(X) + b$
N3 - for a non-negative r.v. Y , $E(Y) = \int_{0}^{\infty} P(Y > y) dy$

Proof. $\int_0^\infty P(Y > y) \, dy = \int_0^\infty \int_y^\infty f_Y(x) \, dx \, dy$ (because $f(x) = \frac{d}{dx} F(x)$) $=\int_0^\infty \int_0^x f_Y(x) \, dy \, dx$ (draw diagram to convert integration) $= \int_0^\infty f_Y(x) \int_0^x dy \, dx$ = $\int_0^\infty x f_Y(x) \, dx$ (because $\int_0^x dy = x$) = E(Y)

variance

N1 - variance of X, $Var(X) = E[(X - \mu)^2] = E(X^2) - [E(X)]^2$

example

f(*)

Q - Find the pdf of (b - a)X + a where a, b are constants, b > a. The pdf of X is given by $f(x) = \begin{cases} 1, & 0 \le X \le 1\\ 0, & \text{otherwise} \end{cases}$.

A. Let
$$Y = (b - a)X + a$$
.
 $\operatorname{cdf}, F_Y(y) = P(Y \le y) = P((b - a)X + a \le y) = P(X \le \frac{y - a}{b - a})$
 $F_Y(y) = \int_0^{\frac{y - a}{b - a}} 1 \, dx = \frac{y - a}{b - a}, \quad a < y < b$
 $f_Y(y) = \frac{d}{dy} F_Y(y) = \begin{cases} \frac{1}{b - a}, & a < y < b \\ 0, & \text{otherwise} \end{cases}$

Uniform Random Variable

X is a **uniform r.v.** on the interval $(\alpha, \beta), X \sim Uniform(\alpha, \beta)$ if its pdf is given by

$$f(x) = \begin{cases} \frac{1}{\beta - \alpha}, & \alpha < x < \beta \\ 0, & \text{otherwise} \end{cases}$$
$$E(X) = \frac{\alpha + \beta}{2}, \quad Var(X) = \frac{(\beta - \alpha)^2}{12}$$

$$\underbrace{\frac{1}{\beta^{\frac{1}{\alpha}}}}_{\mathbf{b} - \frac{1}{\alpha}} \quad \text{if } X \sim Uniform(\alpha, \beta) \text{, then } \frac{x - \alpha}{\beta - \alpha} \sim Uniform(0, 1)$$

Normal Random Variable

A . A

X is a **normal r.v.** with parameters μ and σ^2 , $X \sim N(\mu, \sigma^2)$ if the pdf of X is given by

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}(\frac{x}{\mu}\sigma)^2}, \quad -\infty < x < \infty$$
$$E(x) = \mu, \quad Var(X) = \sigma^2$$

$$\begin{array}{c} & \text{if } X \sim N(\mu,\sigma^2) \text{, then } \frac{X-\mu}{\sigma} \sim N(0,1) \\ & \text{if } Y \sim N(\mu,\sigma^2) \text{ and } a \text{ is a constant, } F_y(a) = \Phi(\frac{a-\mu}{\sigma}) \end{array}$$

standard normal distribution
$$\to X \sim N(0, 1)$$

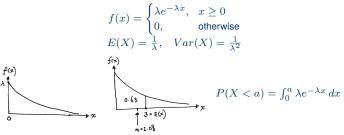
• $F(x) = P(X \le x) = \frac{1}{\sqrt{r\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}y^2} dy = \Phi(x)$

Normal Approximation to the Binomial Distribution

$$\begin{split} \text{if } S_n \sim Binomial(n,p), \text{then } \frac{S_n-np}{\sqrt{np(1-p)}} \sim N(0,1) \text{ for large } n \\ \mu = np, \quad \sigma^2 = np(1-p) \end{split}$$

Exponential Random Variable

a continuous r.v. X is a exponential r.v., $X \sim Exponential(\lambda)$ or $Exp(\lambda)$ if for some $\lambda > 0$, its pdf is given by



• an exponential r.v. is memoryless

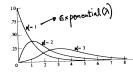
• a non-negative r.v. is **memoryless** \rightarrow if $P(X > s + t \mid X > t) = P(X > s)$ for all s, t > 0.

Gamma Distribution

a r.v. X has a **gamma distribution**, $X \sim Gamma(\alpha, \lambda)$ with parameters $(\alpha, \lambda), \lambda > 0$ and $\alpha > 0$ if its pdf is given by

$$f(x) \begin{cases} \frac{\lambda e^{-\lambda x} (\lambda x)^{\alpha - 1}}{\Gamma(\alpha)}, & x \ge 0\\ 0, & x < 0 \end{cases}$$
$$E(X) = \frac{\alpha}{\lambda} \quad Var(X) = \frac{\alpha}{\lambda^2}$$

where the gamma function $\Gamma(\alpha)$ is defined as $\Gamma(\alpha) = \int_0^\infty e^{-y} y^{\alpha-1} dy$.



N1 - $\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$ *Proof.* using integration by parts of LHS to RHS **N2** - if α is an integer n, then $\Gamma(n) = (n - 1)!$ **N3** - if $X \sim Gamma(\alpha, \lambda)$ and $\alpha = 1$, then $X \sim Exp(\lambda)$.

Gamma densities ($\lambda = 1$

N4 - for events occurring randomly in time following the 3 assumptions of poisson distribution, the amount of time elapsed until a total of n events has occurred is a gamma r.v. with parameters (n, λ) .

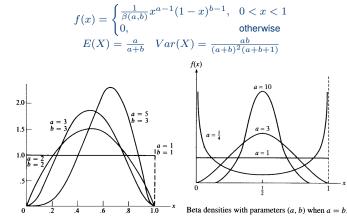
• time at which event n occurs, $T_n \sim Gamma(n, \lambda)$

- number of events in time period $[0,t], N(t) \sim Poisson(\lambda t)$

 ${\rm N5}$ - $Gamma(\alpha=\frac{n}{2},\lambda=\frac{1}{2})=\chi^2_n$ $\ \, ({\rm chi-square\ distribution\ to\ }n$ degrees of freedom)

Beta Distribution

a r.v. X is said to have a $\mbox{beta distribution},$ $X \sim Beta(a,b)$ if its density is given by



$$\begin{split} & \mathsf{N1} \cdot \beta(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} \, dx \\ & \mathsf{N2} \cdot \beta(a=1,b=1) = Uniform(0,1) \\ & \mathsf{N3} \cdot \beta(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} \end{split}$$

Cauchy Distribution

a r.v. X has a cauchy distribution, $X \sim Cauchy(\theta)$ with parameter $\theta, \infty < \theta < \infty$ if its density is given by

$$f(x) = \frac{1}{\pi} \cdot \frac{1}{1 + (x - \theta)^2}, -\infty < x < \infty$$

Proof. $E(X^n)$ does not exist for $n \in \mathbb{Z}^+$ $E(X) = \int_{-\infty}^{\infty} x \cdot f(x) \, dx = \infty - \infty$ (undefined)

06. JOINTLY DISTRIBUTED RANDOM VARIABLES

Joint Distribution Function

62

Ь,

x

the joint cumulative distribution function of the pair of r.v. X and Y is $\rightarrow F(x, y) = P(X \le x, Y \le y), -\infty < x < \infty, -\infty < y < \infty$ N1 - marginal cdf of X, $F_X(x) = \lim_{y \to \infty} F(x, y)$. N2 - marginal cdf of Y, $F_Y(y) = \lim_{x \to \infty} F(x, y)$.

$$N3 - P(X > a, Y > b) = 1 - F_X(a) - F_Y(b) + F(a, b)$$

$$N4 - P(a_1 < X \le a_2, b_1 < Y \le b_2)$$

$$= F(a_2, b_2) + F(a_1, b_1) - F(a_1, b_2) - F(a_2, b_1)$$

Joint Probability Mass Function

if X and Y are both discrete r.v., then their ${\rm joint\ pmf}$ is defined by p(i,j)=P(X=i,Y=j)

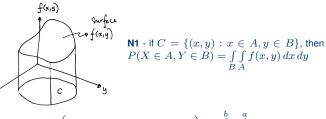
N1 - marginal pmf of X, $P(X = i) = \sum_{j} P(X = i, Y = j)$ N2 - marginal pmf of Y, $P(Y = i) = \sum_{i} P(X = i, Y = j)$

Joint Probability Density Function

the r.v. X and Y are said to be *jointly continuous* if there is a function f(x, y) called the **joint pdf**, such that for any two-dimensional set C,

$$P[(X,Y)\in C]=\int\int f(x,y)\,dx\,dy$$

= volume under the surface over the region C.



N2 -
$$F(a, b) = P(X \in (-\infty, a], Y \in (-\infty, b]) = \int_{-\infty} \int_{-\infty} f(x, y) dx dy$$

for double integral: when integrating dx , take y as a constant

N3 - $f(a,b) = \frac{\delta^2}{\delta a \delta b} F(a,b)$

interpretation of pdf

$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) dy$$

$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) dy$$

$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) dy$$

$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) dy$$

$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) dy$$

$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) dy$$

$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) dy$$

$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) dy$$

$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) dy$$

$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) dy$$

$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) dy$$

$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) dy$$

$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) dy$$

$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) dy$$

$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) dy$$

$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) dy$$

$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) dy$$

$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) dy$$

$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) dy$$

$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) dy$$

$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) dy$$

$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) dy$$

$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) dy$$

$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) dy$$

$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) dy$$

$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) dy$$

$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) dy$$

$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) dy$$

$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) dy$$

$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) dy$$

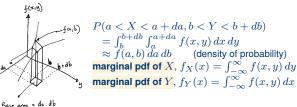
$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) dy$$

$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) dy$$

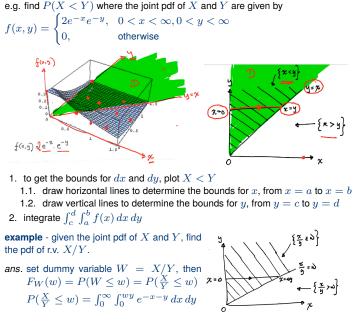
$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) dy$$

$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) dy$$

interpretation of joint pdf



how to do a double integral



Independent Random Variables

 $\begin{array}{l} \mathsf{N1} \cdot X \text{ and } Y \text{ are independent} \rightarrow \\ P(X \in A, Y \in B) = P(X \in A) \cdot P(Y \in B) \\ \mathsf{N2} \cdot X \text{ and } Y \text{ are independent} \rightarrow \forall a, b, \\ P(X \leq a, Y \leq b) = P(X \leq a) \cdot P(Y \leq b) \\ \text{ or } F(a,b) = F_X(a) \cdot F_Y(b) \Rightarrow \text{ joint cdf is the product of the marginal cdfs} \\ \mathsf{N3} \cdot \textit{discrete case: discrete r.v. } X \text{ and } Y \text{ are independent} \iff \\ P(X = x, Y = y) = P(X = x) \cdot P(Y = y) \text{ for all } x, y. \\ \mathsf{N4} \cdot \textit{continuous case: jointly continuous r.v. } X \text{ and } Y \text{ are independent} \iff \\ f(x,y) = f_X(x) \cdot f_Y(y) \text{ for all } x, y. \\ \mathsf{N5} \text{ - independence is a symmetric relation} \rightarrow X \text{ is independent of } Y \iff Y \text{ is } \end{array}$

Sum of Independent Random Variables

N1 - for independent, continuous r.v. X and Y having pdf f_X and f_Y , $F_{X+Y}(a) = \int_{-\infty}^{\infty} F_X(a-y) f_Y(y) \, dy$

$$f_{X+Y}(a) = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) \, dy$$

impt example - E52 (pdf of X + Y)

independent of X

Distribution of Sums of Independent r.v.

for
$$i = 1, 2, ..., n$$
,
1. $X_i \sim Gamma(t_i, \lambda) \Rightarrow \sum_{i=1}^n X_i \sim Gamma(\sum_{i=1}^n t_i, \lambda)$
2. $X_i \sim Exp(\lambda) \Rightarrow \sum_{i=1}^n X_i \sim Gamma(n, \lambda)$
3. $Z_i \sim N(0, 1) \Rightarrow \sum_{i=1}^n z_i^2 \sim \chi_n^2 = Gamma(\frac{n}{2}, \frac{1}{2})$
4. $X_i \sim N(\mu_i, \sigma_i^2) \Rightarrow \sum_{i=1}^n X_i \sim N(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2)$
5. $X \sim Poisson(\lambda_1), Y \sim Poisson(\lambda_2) \Rightarrow X + Y \sim Poisson(\lambda_1 + \lambda_2)$
6. $X \sim Binom(n, p), Y \sim Binom(m, p) \Rightarrow X + Y \sim Binom(n + m, p)$

Conditional Distribution (discrete)

for discrete r.v. X and Y, the **conditional pmf** of X given that Y = y is $P_{X|Y}(x|y) = P(X = x|Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{p(x, y)}{p_Y(y)}$

or discrete r.v. X and Y, the conditional pdf of X given that
$$Y = y$$
 is
 $F_{X|Y}(x|y) = P(X \le x|Y = y) = \sum_{a \le x} \frac{P(X=a,Y=y)}{P(Y=y)} = \sum_{a \le x} P_{X|Y}(a|y)$

N0 - equivalent notation:

• $P_{X|Y}(x|y) = P(X = x|Y = y)$ • $P_X(x) = P(X = x)$ **N1** - if X is independent of Y, then $P_{X|Y}(x|y) = P_X(x)$

Conditional Distribution (continuous)

for X and Y with joint pdf f(x, y), the **conditional pdf** of X given that Y = y is $f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$ for all y s.t. $f_Y(y) > 0$ $f_{X|Y}(a|y) = P(X \le a|Y = y) = \int_{-\pi}^{a} f_{X|Y}(x|y) dx$ N1 - for any set A, $P(X \in A|Y=y) = \int f_{X|Y}(x|y) \, dy$

N2 - if X is independent of Y, then $f_{X|Y}(x|y) = f_X(x)$. ! "find the marginal/conditional pdf of $Y'' \Rightarrow$ must include the **range** too!! (see Ex. 69(b, c))

Joint Probability Distribution of Functions of r.v.

Let X_1 and X_2 be jointly continuous r.v. with joint pdf $f_{x_1,x_2}(x_1,x_2)$. Suppose $Y_1 = q_1(X_1, X_2)$ and $Y_2 = q_2(X_1, X_2)$ satisfy

1. the equations $y_1 = q_1(X_1, X_2)$ and $y_2 = q_2(X_1, X_2)$ can be uniquely solved for x_1, x_2 in terms of y_1 and y_2

2. $g_1(x_1, x_2)$ and $g_2(x_1, x_2)$ have continuous partial derivatives at all points

 $(x_1, x_2) \text{ such that } J(x_1, x_2) = \begin{vmatrix} \frac{\delta g_1}{\delta x_1} & \frac{\delta g_1}{\delta x_2} \\ \frac{\delta g_2}{\delta g_2} & \frac{\delta g_2}{\delta x_2} \end{vmatrix} = \frac{\delta g_1}{\delta x_1} \cdot \frac{\delta g_2}{\delta x_2} - \frac{\delta g_2}{\delta x_1} \cdot \frac{\delta g_1}{\delta x_2} \neq 0$

then

 $f_{Y_1,Y_2}(y_1,y_2) = f_{X_1,X_2}(x_1,x_2) \frac{1}{|J(x_1,x_2)|}$ where $x_1 = h_1(y_1, y_2), x_2 = h_2(y_1, y_2)$

07. PROPERTIES OF EXPECTATION

recap:

• for a discrete r.v. $X, E(X) = \sum_x x \cdot p(x) = \sum_x \cdot P(X = x)$ • for a continuous r.v. $X, E(X) = \int_{-\infty}^{\infty} x \cdot f(x) \, dx$ • for a non-negative integer-valued r.v. $Y, E(Y) = \sum_{i=1}^{\infty} P(Y \ge i)$ • for a non-negative r.v. $Y, E(Y) = \int_{-\infty}^{\infty} P(Y > y) \, dy$

Expectations of Sums of Random Variables

for X and Y with joint pmf p(x, y) and joint pdf f(x, y), $E[g(x,y)] = \sum \sum g(x,y)p(x,y)$ $E[g(x,y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y)f(x,y) \, dx \, dy$

N2 - if $P(a \le X \le b) = 1$, then $a \le E(X) \le b$ N3 - if E(X) and E(Y) are finite. E(X + Y) = E(X) + E(Y)

Proof. using N1, integrate $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x+y) f(x,y) \, dx \, dy$ $= \int_{-\infty}^{\infty} x \cdot f_X(x) \, dx + \int_{-\infty}^{\infty} y f_Y(y) \, dy = E(X) + E(Y)$

N4 - if, for r.v.s X and Y, if X > Y, then E(X) > E(Y)N5 - let X_1, \ldots, X_n be independent and identically distributed r.v.s having distribution $P(X_i \le x) = F(x)$ and expected value $E(X_i) = \mu$.

if
$$\bar{X} = \sum_{i=1}^{n} \frac{X_i}{n}$$
, then $E(\bar{X}) =$

$$\textit{Proof. } E(\bar{X}) = E(\sum_{i=1}^{n} \frac{X_i}{n}) = \frac{1}{n}(\sum_{i=1}^{n} E(X_i)) = \frac{1}{n} \cdot n\mu = \mu$$

 \Rightarrow sample mean = population mean

N6 - \overline{X} is the sample mean.

N7 - if $X \sim Binom(n, p)$, then E(X) = np.

Proof. express X as a sum of Bernoulli r.v. \Rightarrow sum of indicator r.v. = np.

examples

! trick: express a r.v. as a sum of r.v. with easier to find expectation • negative binomial = sum of geometric = k/p hypergeometric with r red balls out of N balls with n trials • indicator r.v. = 1 if the *i*th ball selected is red • $P(Y_i = 1) = \frac{r}{N} \Rightarrow E(Y_i) = \frac{r}{N} \Rightarrow E(X) = \sum_{i=1}^n Y_i = n \frac{r}{N}$ · hat throwing problem: expected number of people that select their own hat • P(select your own hat back) = $\frac{1}{N} \Rightarrow E(X) = N \cdot \frac{1}{N} = 1$ · coupon collector problem: • let X = number of coupons collected for a complete set • let X_i = number of additional coupons that need to be collected to obtain

another distinct type after *i* distinct types have been collected

• $X_i \sim Geometric(p = \frac{N-i}{N})$

•
$$E(X) = \sum_{i=1}^{N-1} E(X_i) = 1 + \frac{1}{\frac{N-1}{N}} + \frac{1}{\frac{N-2}{N}} + \dots + \frac{1}{\frac{1}{N}}$$

= $N(\frac{1}{N} + \frac{1}{N-1} + \dots + 1)$

Covariance, Variance of Sums and Correlations

if X and Y are independent, then for any functions h and q, $E[g(X)h(Y)] = E[g(X)] \cdot E[h(Y)]$

covariance \rightarrow measure of linear relationship

Cov(X,Y) = E[(X - E[X])(Y - E[Y])]Cov(X,Y) = E(XY) - E(X)E(Y)

N1 - X and Y are independent $\Rightarrow Cov(X, Y) = 0$ **N2** - $Cov(X, Y) = 0 \neq X$ and Y are independent

Proof. let E(X) = 0, $E(XY) = 0 \Rightarrow Cov(X, Y) = 0$, but not independent e.g. non-linear relationship

Covariance properties

 $\Rightarrow S^2$ is an *unbiased estimator* for σ^2

1. Cov(X, Y) = Cov(Y, X)2. Cov(X, X) = Var(X)3. Cov(aX, Y) = aCov(X, Y)4. $Cov(\sum_{i=1}^{n} X_i, \sum_{j=1}^{m} Y_j) = \sum_{i=1}^{n} \sum_{j=1}^{m} Cov(X_i, Y_j)$ $\mathbf{N1} \cdot Var(\sum_{i=1}^{n} X_i) - \sum_{i=1}^{n} Var(X_i) + 2\sum_{i < j} Cov(X_i, X_j)$ **N2** - if X_1, \ldots, X_n are pairwise independent $(X_i, X_j \text{ are independent } \forall i \neq j)$, then $Var(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} Var(X_i)$ N3 - for n independent and identically distributed r.v. with expected value μ and variance σ^2 . $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$ $S^2 \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$ $Var(\bar{X}) = \frac{\sigma^2}{n} \qquad E(S^2) = \sigma^2$

Correlation

correlation of two r.v. X and Y, $\rho(X, Y) = \frac{Cov(X,Y)}{\sqrt{Var(X) \cdot Var(Y)}}$

N1 - $-1 \le \rho(X, Y) \le 1$ where -1 and 1 denote a perfect negative and positive linear relationship respectively.

N2 - $\rho(X, Y) = 0 \Rightarrow$ no *linear* relationship - uncorrelated

N3 - $\rho(X, Y) = 1 \Rightarrow Y = aX + b, a = \frac{\delta y}{\delta x} > 0$ N4 for events A and B with indicator r.v. I_A and I_B , then $Cov(I_A, I_B) = 0$ when they are independent events.

N5 - deviation is not correlated with the sample mean. For independent & identically distributed r.v. X_1, X_2, \ldots, X_n with variance σ^2 , then $Cov(X_i - \bar{X}, \bar{X}) = 0$.

Proof.
$$Cov(X_i - \bar{X}, \bar{X}) = Cov(X_i, \bar{X}) - Cov(\bar{X}, \bar{X})$$

 $= Cov(X_i, \frac{1}{n} \sum_{j=1}^n X_j) - Var(\bar{X})$
 $= \frac{1}{n} \sum_{j=1}^n Cov(X_i, X_j) - Var(\bar{X})$
 $= \frac{1}{n} Cov(X_i, X_i) - \frac{\sigma^2}{n}$ since $\forall i \neq j, Cov(x_i, x_j) = 0$
 $= \frac{1}{n} Var(x_i) - \frac{\sigma^2}{n} = 0$

Conditional Expectation

the **conditional expectation** of X.

given that Y = y, for all values of y such that $P_Y(y) > 0$ is defined by

$$E[X|Y = y] = \sum_{x} x \cdot P(X = x|Y = y) = \sum_{x} x \cdot p_{X|Y}(x|y)$$
$$E(X|Y = y) = \int_{-\infty}^{\infty} f_{X|Y}(x|y) dx = \int_{-\infty}^{\infty} \frac{f(x,y)}{f_Y(y)} dx$$

note the range for $f_{X|Y}(x|y)$

N1 - If $X, Y \sim Geometric(p)$, then $P(X = i | X + Y = n) = \frac{1}{n-1}$, a uniform distribution. **N2** - $E(X|X+Y=n) = \sum_{i=1}^{n-1} i \cdot P(X=i|X+Y=n) = \frac{n}{2}$

Conditional expectations also satisfy properties of ordinary expectations. ⇒ an ordinary expectation on a reduced sample space consisting only of outcomes for which Y = y

discrete case:
$$E[g(x)|Y = y] = \sum_{x} g(x)P_{X|Y}(x|y)$$

continuous case: $E[g(x)|Y = y] = \int_{-\infty}^{\infty} g(x)f_{X|Y}(x|y)$
then $E(X) = E_{w.r.t.} y(E_{w.r.t.} X|Y = y(X|Y))$

Deriving Expectation

 $E(X) = E_Y(E_X(X|Y))$ discrete case: $E(X) = \sum E(X|Y = y)P(Y = y)$ continuous case: $E(X) = \int_{-\infty}^{y} E(X|Y=y) f_Y(y) dy$ **N3** - 3 methods for finding E(X) given f(x, y)1. using $E(g(x,y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y)f(x,y) \, dx \, dy \quad \Rightarrow \text{let } g(x,y) = x$ 2. using $E(X) = \int_{-\infty}^{\infty} x f_X(x) dx$ 3. using $E(X) = \int_{-\infty}^{\infty} E(X|Y=y) f_Y(y) dy$ **N4** - $E(\sum_{i=1}^{N} X_i) = E_N(E(\sum_{i=1}^{N} X_i|N)) = \sum_{n=0}^{\infty} E(\sum_{i=1}^{N} X_i|N=n) \cdot P(N=n)$

Computing Probabilities by Conditioning

$$\begin{split} P(E) &= \sum_{y} P(E|Y=y) P(Y=y) \text{ if } Y \text{ is discrete} \\ P(E) &= \int_{-\infty}^{\infty} P(E|Y=y) f_Y(y) \, dy \text{ if } Y \text{ is continuous} \end{split}$$

Proof. let X be an indicator r.v. for E. $\Rightarrow E(X) = P(E)$ E(X|Y = y) = P(X = 1|Y = y) = P(E|Y = y)

N5 - find $P((X, Y) \in C)$ given f(x, y): see p.57 also: $P(X < Y) = \int P(X < Y|Y = y) \cdot f_Y(y)$

Conditional Variance

 $Var(X|Y) = E[(X - E(X|Y))^2 | Y]$ $Var(X|Y) = E(X^2|Y) - [E(X|Y)]^2$ N6 - Var(X) = E[Var(X|Y)] + Var[E(X|Y)]

 $\begin{aligned} \mathbf{N7} & - E(f(Y)) = E(f(Y)|Y = t) = E(f(y)|Y = t) \\ & = E(f(t)) \quad \text{if } N(t) \text{ and } Y \text{ are independent} \end{aligned}$

Moment Generating Functions

moment generating function M(t) of the r.v. $X \rightarrow M(t) = E(e^{tX})$ for all real values of t

• if X is discrete with pmf p(x), $M(t) = \sum_{x} e^{tx} \cdot p(x)$ • if X is continuous with pdf f(x), $M(t) = \int_{-\infty}^{\infty} e^{tx} f(x) dx$

M(t) is called the **mgf** because *all moments of* X can be obtained by successively differentiating M(t) and then evaluating the result at t = 0. $(M'(0) = E(X), M''(0) = E(X^2)$, etc) in general, • $M'(t) = E(X^n e^{tX}), \quad n \ge 1$

• $M^n(0) = E(X^n), \quad n \ge 1$

N8 - binomial expansion: $(a+b)^n = \sum\limits_{i=1}^n {n \choose i} a^i b^{n-i}$

(see other series for useful expansions on other distributions) N9 - integrating over a pdf from ∞ to $-\infty$ always gives 1

if X and Y are independent and have mgf's $M_X(t)$ and $M_Y(t)$ respectively, N10 - the mgf of X + Y is $M_{X+Y}(t) = M_X(t) \cdot M_Y(t)$

 $\begin{array}{l} \textit{Proof.} \ M_{X+Y}(t) = E[e^{t(X+Y)}] = E[e^{tX} \cdot e^{tY}] = E(e^{tX})E(e^{tY}) \\ = M_X(t) \cdot M_Y(t) \end{array}$

N11 - if $M_X(t)$ exists and is finite in some region about t = 0, then the distribution of X is **uniquely** determined. $M_X(t) = M_Y(t) \iff X = Y$

Common mgf's

• $X \sim Normal(0,1), \quad M(t) = e^{e^2/2}$

•
$$X \sim Binomial(n, p), \quad M(t) = (pe^t + (1-p))^n$$

• $X \sim Poisson(\lambda), \quad M(t) \exp[\lambda(e^t - 1)]$

• $X \sim Exp(\lambda), \quad M(t) = \frac{\lambda}{\lambda - t}$

08. LIMIT THEOREMS

Markov's Inequality \rightarrow if X is a non-negative r.v., for any a > 0, $P(X \ge a) \le \frac{E(x)}{a}$.

Proof. let *I* be an indicator r.v. = 1 when $X \ge a$. Then $I \le \frac{X}{a}$, and $E(I) \le \frac{E(X)}{a}$, and $P(X \ge a) \le \frac{E(X)}{a}$.

Chebyshev's inequality \rightarrow if X is an r.v. with finite mean μ and variance σ^2 , then for any value of k > 0, $P(|X - \mu| \ge k) \le \frac{\sigma^2}{L^2}$.

Proof. $P[(X - \mu)^2 \ge k^2] \le \frac{E[(X - \mu)^2]}{k^2}$ by Markov's inequality Since $(X - \mu)^2 \ge k^2 \iff |X - \mu| \ge k$, then $P(|X - \mu| \ge k) \le \frac{\sigma^2}{k^2}$

N1 - if Var(X) = 0, then P(X = E[X]) = 1

Proof. let $\mu = E[X]$. by Chebyshev's inequality, for any $n \ge 1$, $P(|X - \mu| > \frac{1}{n}) \le \frac{Var(X)}{(\frac{1}{n})^2} = 0$ then $P(X \ne \mu) = 0 \Rightarrow P(X = \mu) = 1$ weak law of large numbers $\rightarrow \text{let } X_1, X_2, \ldots$ be a sequence of independent and identically distributed r.v.s, each with finite mean $E[X_i] = \mu$. Then, for any $\epsilon > 0$, $P\{|\frac{X_1 + \cdots + X_n}{n} - \mu| \ge \epsilon\} \rightarrow 0$ as $n \rightarrow \infty$ central limit theorem $\rightarrow \text{let } X_1, X_2, \ldots$ be a sequence of independent and identically distributed r.v.s each having mean μ and variance σ^2 . Then the distribution of $\frac{X_1 + \cdots + X_n - n\mu}{\sigma\sqrt{n}}$ tends to the standard normal as $n \rightarrow \infty$. • aka: $\frac{\bar{x} - \mu}{\sigma\sqrt{n}} \rightarrow z \sim N(0, 1)$ • for $-\infty < a < \infty$, $P(\frac{X_1 + \cdots + X_n - n\mu}{\sigma\sqrt{n}} \le a) \rightarrow \frac{1}{\sqrt{2\pi}} \int_{-\infty}^a e^{-x^2/2} dx = F(a)$ (cdf of standard normal) as $n \rightarrow \infty$. N2 - Let Z_1, Z_2, \ldots be a sequence of r.v.s with distribution functions F_{Z_n} and moment generating functions $M_{Z_n}, n \ge 1$. Let Z be a r.v. with distribution function F_Z and mgf M_Z . If $M_{Z_n}(t) \rightarrow M_Z(t)$ for all t, then $F_{Z_n}(t) \rightarrow F_Z(t)$ for all t at which $F_Z(t)$ is continuous.

strong law of large numbers $\rightarrow \text{let } X_1, X_2, \dots$ be a sequence of independent and identically distribution r.v.s, each having finite mean $\mu = E[X_i]$. Then, with probability 1, $\frac{X_1 + \dots + X_n}{n} \rightarrow \mu$ as $n \rightarrow \infty$

commutative	$E\cup F=F\cup E$	$E\cap F=F\cap E$
associative	$(E \cup F) \cup G = E \cup (F \cup G)$	$(E \cap F) \cap G = E \cap (F \cap G)$
distributive	$(E \cup F) \cap G = (E \cap F) \cup (F \cap G)$	$(E \cap F) \cup G = (E \cup F) \cap (F \cup G)$
DeMorgan's	$(\bigcup_{i=1}^{n} E_i)^c = \bigcap_{i=1}^{n} E_i^c$	$(\bigcap_{i=1}^{n} E_i)^c = \bigcup_{i=1}^{n} E_i^c$