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Introduction

This document will help cover some needed fundamentals of sequences, series,
recursion, arithmetic and geometric sequences, and number bases. The topics
will be explained with step-by-step examples and detailed calculations, which
are essential for building mathematical reasoning and computational skills. This
document was made for CM1015 at UOL

1 Sequences and Series

A sequence is an ordered list of numbers, while a series is the sum of the terms
in a sequence.

1.1 Arithmetic Sequences

An arithmetic sequence has a constant difference between consecutive terms,
known as the common difference (d). Each term in an arithmetic sequence is
given by:

an = a1 + (n− 1) · d

where:

• an is the n-th term,

• a1 is the first term,

• d is the common difference.

Example: Find the 5th term in the sequence where a1 = 3 and d = 4.
Solution:

a5 = a1 + (5− 1) · d

= 3 + 4 · 4 = 3 + 16 = 19
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1.2 Sum of an Arithmetic Sequence

The sum of the first n terms (Sn) of an arithmetic sequence is:

Sn =
n

2
(2a1 + (n− 1)d)

Example: Find the sum of the first 10 terms of the sequence where a1 = 3
and d = 4.

Solution:

S10 =
10

2
(2 · 3 + (10− 1) · 4)

= 5(6 + 36) = 5 · 42 = 210

1.3 Geometric Sequences

A geometric sequence has a constant ratio between consecutive terms, called
the common ratio (r). Each term is given by:

an = a1 · rn−1

Example: Find the 4th term in a sequence where a1 = 2 and r = 3.
Solution:

a4 = 2 · 34−1 = 2 · 33 = 2 · 27 = 54

1.4 Sum of a Geometric Sequence

The sum of the first n terms of a geometric sequence is:

Sn = a1
1− rn

1− r
ifr ̸= 1

Example: Find the sum of the first 5 terms of a geometric sequence with
a1 = 2 and r = 3.

Solution:

S5 = 2 · 1− 35

1− 3
= 2 · 1− 243

−2
= 2 · −242

−2
= 2 · 121 = 242

2 Recursion

Recursion defines each term in a sequence based on previous terms. The Fi-
bonacci sequence is a well-known example, where each term is the sum of the
two preceding terms:

Fn = Fn−1 + Fn−2

with initial conditions F0 = 0 and F1 = 1.
Example: Calculate F5 in the Fibonacci sequence.
Solution:

F2 = F1+F0 = 1+0 = 1, F3 = F2+F1 = 1+1 = 2, F4 = F3+F2 = 2+1 = 3, F5 = F4+F3 = 3+2 = 5.
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3 Number Bases

Numbers are often represented in various bases. We cover binary (base-2) and
hexadecimal (base-16) systems.

3.1 Binary Numbers

Binary (base-2) numbers use only 0 and 1. Each position represents a power of
2.

3.1.1 Conversion to Decimal

To convert binary to decimal, sum each bit times its positional power of 2.

(1011)2 = 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20 = 8 + 0 + 2 + 1 = 11

Example: Convert (1101)2 to decimal.
Solution:

(1101)2 = 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20 = 8 + 4 + 0 + 1 = 13

3.1.2 Binary Addition

Binary addition follows these rules: 0 + 0 = 0, 1 + 0 = 1, 1 + 1 = 10 (carry 1).
Example: Add (101)2 and (110)2.
Solution:

1
101

+ 110
1011

3.2 Hexadecimal Numbers

Hexadecimal (base-16) numbers use digits 0-9 and letters A-F, where A = 10,
B = 11, up to F = 15.

3.2.1 Conversion to Decimal

To convert hexadecimal to decimal, multiply each digit by its positional power
of 16.

(1A)16 = 1 · 161 + 10 · 160 = 16 + 10 = 26

Example: Convert (2F )16 to decimal.
Solution:

(2F )16 = 2 · 161 + 15 · 160 = 32 + 15 = 47
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3.3 Hexadecimal to Binary Conversion

Each hexadecimal digit converts to a 4-bit binary sequence.
Example: Convert (1A)16 to binary.
Solution: 1 in hex is (0001)2, and A (10) is (1010)2, so:

(1A)16 = (0001 1010)2

4


