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Introduction

The Law of Large Numbers (LLN) is a fundamental theorem in probability theory that
describes the result of performing the same experiment a large number of times.

In simple terms, the LLN states that as the number of trials or experiments increases,
the average of the results tends to get closer to the expected value.

Understanding the Basics

Law of Large Numbers: Consider an experiment repeated multiple times. Each trial
is independent, and the random variable Xi represents the outcome of the i-th trial. The
expected value of the outcome is E[Xi] = µ.

Let X̄n represent the average of n independent and identically distributed random
variables:

X̄n =
1

n

n∑
i=1

Xi

The Law of Large Numbers says that as n increases, X̄n converges to µ with high prob-
ability.

Types of LLN

There are two main forms of the Law of Large Numbers:

1. Weak Law of Large Numbers (WLLN)

The Weak Law states that for any small positive number ϵ, the probability that the
sample average X̄n is within ϵ of the expected value µ approaches 1 as n increases:

lim
n→∞

P (|X̄n − µ| < ϵ) = 1

This means that as the number of trials grows, the sample average converges in probability
to the expected value.
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2. Strong Law of Large Numbers (SLLN)

The Strong Law is a more powerful version. It states that with probability 1, the sample
average X̄n will converge to the expected value µ as n approaches infinity:

P
(
lim
n→∞

X̄n = µ
)
= 1

The key difference between the two is that the Weak Law focuses on convergence in
probability, while the Strong Law focuses on almost sure convergence (which is a stronger
condition).

Why LLN is Important in Computer Science

In fields like Machine Learning, Data Science, and Statistical Modeling, you frequently
deal with large datasets or simulations. The LLN assures that as the dataset grows,
the average of the results from a model will stabilize and approach the true population
average.

For example, when training a machine learning model, the model learns from samples
of data. The more data it has, the closer its predictions can be to the actual result,
assuming no bias in the data. LLN helps provide the foundation for understanding this
kind of statistical consistency.

Applications in Machine Learning and Algorithms

• Monte Carlo Simulations: Monte Carlo methods are widely used in areas such
as reinforcement learning, optimization, and probabilistic inference. These methods
rely on repeated random sampling to obtain numerical results. The LLN ensures
that as the number of simulations increases, the empirical average of the sampled
outcomes converges to the true expected value. This provides confidence that sim-
ulations will yield accurate results as the sample size grows.

• Parameter Estimation: In machine learning, especially in probabilistic models
like Bayesian inference or when fitting a model to data, the LLN guarantees that
the average of sample data points approaches the true value of the underlying
parameter as the sample size increases. For example, when training a model with
a large dataset, the estimated parameters (such as means and variances) become
more accurate as more data is processed, reducing the effect of randomness or noise.

Mathematical Derivation

To provide a deeper understanding, we can outline a derivation of the Weak Law using
Chebyshev’s inequality.

Let X1, X2, . . . , Xn be independent, identically distributed random variables with
E[Xi] = µ and Var(Xi) = σ2. The sample mean is:

X̄n =
1

n

n∑
i=1

Xi
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Now, we apply Chebyshev’s inequality, which states:

P (|X̄n − µ| ≥ ϵ) ≤ Var(X̄n)

ϵ2

Since Var(X̄n) =
σ2

n
, we have:

P (|X̄n − µ| ≥ ϵ) ≤ σ2

nϵ2

As n → ∞, the right-hand side tends to 0, which implies that X̄n converges in probability
to µ.

Example

Let’s consider a simple example. Suppose you are flipping a fair coin. The expected value
of a single coin flip is:

E[X] = 0.5

Now, flip the coin multiple times and calculate the sample mean. According to the Law
of Large Numbers, as the number of flips increases, the sample mean will get closer and
closer to the expected value of 0.5.

You can perform a simulation as follows:

1. Define the outcome of a fair coin flip as 1 for heads and 0 for tails.

2. Repeat the experiment n times, each time recording the result.

3. After each experiment, calculate the cumulative average (i.e., the running average)
of the results.

4. As n increases, you should observe that the average of the outcomes stabilizes
around 0.5.

For example, if you simulate 1,000 coin flips, the plot of the running average might
show oscillations at first, but over time, it will converge toward 0.5. This is a practical
demonstration of the Law of Large Numbers.
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