Linear algebra cheat-sheet

Laurent Lessard

University of Wisconsin-Madison

Matrix basics

A matrix is an array of numbers. $A \in \mathbb{R}^{m \times n}$ means that:

$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}$$
 (*m* rows and *n* columns)

Two matrices can be multiplied if inner dimensions agree:

$$C_{(m \times p)} = A_{(m \times n)(n \times p)} \quad \text{where} \quad c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Transpose: The transpose operator A^T swaps rows and columns. If $A \in \mathbb{R}^{m \times n}$ then $A^T \in \mathbb{R}^{n \times m}$ and $(A^T)_{ij} = A_{ji}$.

- $\bullet (A^{\mathsf{T}})^{\mathsf{T}} = A.$
- $\bullet \ (AB)^{\mathsf{T}} = B^{\mathsf{T}}A^{\mathsf{T}}.$

Matrix basics (cont'd)

Vector products. If $x, y \in \mathbb{R}^n$ are column vectors,

- The inner product is $x^Ty \in \mathbb{R}$ (a.k.a. dot product)
- The outer product is $xy^T \in \mathbb{R}^{n \times n}$.

These are just ordinary matrix multiplications!

Inverse. Let $A \in \mathbb{R}^{n \times n}$ (square). If there exists $B \in \mathbb{R}^{n \times n}$ with AB = I or BA = I (if one holds, then the other holds with the same B) then B is called the *inverse* of A, denoted $B = A^{-1}$.

Some properties of the matrix inverse:

- A^{-1} is unique if it exists.
- $(A^{-1})^{-1} = A$.
- $(A^{-1})^{\mathsf{T}} = (A^{\mathsf{T}})^{-1}$.
- $(AB)^{-1} = B^{-1}A^{-1}$.

Vector norms

A norm $\|\cdot\|:\mathbb{R}^n\to\mathbb{R}$ is a function satisfying the properties:

- ||x|| = 0 if and only if x = 0 (definiteness)
- ||cx|| = |c|||x|| for all $c \in \mathbb{R}$ (homogeneity)
- $||x + y|| \le ||x|| + ||y||$ (triangle inequality)

Common examples of norms:

- $||x||_1 = |x_1| + \cdots + |x_n|$ (the 1-norm)
- $||x||_2 = \sqrt{x_1^2 + \dots + x_n^2}$ (the 2-norm)
- $||x||_{\infty} = \max_{1 \le i \le n} |x_i|$ (max-norm)

Properties of the 2-norm (Euclidean norm)

- If you see ||x||, think $||x||_2$ (it's the default)
- $x^{\mathsf{T}}x = ||x||^2$
- $x^T y \le ||x|| ||y||$ (Cauchy-Schwarz inequality)

Linear independence

A set of vectors $\{x_1, \ldots, x_n\} \in \mathbb{R}^m$ is linearly independent if

$$c_1x_1 + \cdots + c_nx_n = 0$$
 if and only if $c_1 = \cdots = c_n = 0$

If we define the matrix $A = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} \in \mathbb{R}^{m \times n}$ then the columns of A are linearly independent if

$$Aw = 0$$
 if and only if $w = 0$

If the vectors are not linearly independent, then they are **linearly dependent**. In this case, at least one of the vectors is redundant (can be expressed as a linear combination of the others). i.e. there exists a k and real numbers c_i such that

$$x_k = \sum_{i \neq k} c_i x_i$$

The rank of a matrix

rank(A) = maximum number of linearly independent columns = maximum number of linearly independent rows

If $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$ then

- $\operatorname{rank}(A) \leq \min(m, n)$
- $rank(AB) \le min(rank(A), rank(B)) \le min(m, n, p)$
- if rank(A) = n then rank(AB) = rank(B)
- if rank(B) = n then rank(AB) = rank(A)

So multiplying by an invertible matrix does not alter the rank.

General properties of the matrix rank:

- $\operatorname{rank}(A+B) \leq \operatorname{rank}(A) + \operatorname{rank}(B)$
- $rank(A) = rank(A^{T}) = rank(A^{T}A) = rank(AA^{T})$
- $A \in \mathbb{R}^{n \times n}$ is invertible if and only if rank(A) = n.

Linear equations

Given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, linear equations take the form

$$Ax = b$$

Where we must solve for $x \in \mathbb{R}^n$. Three possibilities:

- No solutions. Example: $x_1 + x_2 = 1$ and $x_1 + x_2 = 0$.
- Exactly one solution. Example: $x_1 = 1$ and $x_2 = 0$.
- Infinitely many solutions. Example: $x_1 + x_2 = 0$.

Two common cases:

- Overdetermined: m > n. Typically no solutions. One approach is least-squares; find x to minimize $||Ax b||_2$.
- **Underdetermined**: m < n. Typically infinitely many solutions. One approach is **regularization**; find the solution to Ax = b such that $||x||_2$ is as small as possible.

Least squares

When the linear equations Ax = b are overdetermined and there is no solution, one approach is to find an x that almost works by minimizing the 2-norm of the residual:

$$\underset{x}{\mathsf{minimize}} \|Ax - b\|_2 \tag{1}$$

This problem always has a solution (not necessarily unique). \hat{x} minimizes (1) iff \hat{x} satisfies the **normal equations**:

$$A^{\mathsf{T}}A\hat{x} = A^{\mathsf{T}}b$$

The normal equations (and therefore (1)) have a unique solution iff the columns of A are linearly independent. Then,

$$\hat{x} = (A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}b$$

Range and nullspace

Given $A \in \mathbb{R}^{m \times n}$, we have the definitions:

Range: $R(A) = \{Ax \mid x \in \mathbb{R}^n\}$. Note: $R(A) \subseteq \mathbb{R}^m$ **Nullspace**: $N(A) = \{x \in \mathbb{R}^n \mid Ax = 0\}$. Note: $N(A) \subseteq \mathbb{R}^n$

The following statements are equivalent:

- There exists a solution to the equation Ax = b
- $b \in R(A)$
- $rank(A) = rank([A \ b])$

The following statements are equivalent:

- Solutions to the equation Ax = b are unique
- $N(A) = \{0\}$
- rank(A) = n Remember: rank(A) = dim(R(A))

Theorem: rank(A) + dim(N(A)) = n

Orthogonal matrices

A matrix $U \in \mathbb{R}^{m \times n}$ is **orthogonal** if $U^{\mathsf{T}}U = I$. Note that we must have $m \geq n$. Some properties of orthogonal U and V:

- Columns are orthonormal: $u_i^\mathsf{T} u_j = \delta_{ij}$.
- Orthogonal transformations preserve angles & distances: $(Ux)^{\mathsf{T}}(Uz) = x^{\mathsf{T}}z$ and $||Ux||_2 = ||x||_2$.
- Certain matrix norms are also invariant: $\|UAV^{\mathsf{T}}\|_2 = \|A\|_2$ and $\|UAV^{\mathsf{T}}\|_F = \|A\|_F$
- If U is square, $U^{\mathsf{T}}U = UU^{\mathsf{T}} = I$ and $U^{-1} = U^{\mathsf{T}}$.
- *UV* is orthogonal.

Every subspace has an orthonormal basis: For any $A \in \mathbb{R}^{m \times n}$, there exists an orthogonal $U \in \mathbb{R}^{m \times r}$ such that R(A) = R(U) and $r = \operatorname{rank}(A)$. One way to find U is using **Gram-Schmidt**.

Projections

If $P \in \mathbb{R}^{n \times n}$ satisfies $P^2 = P$, it's called a **projection matrix**. In general, $P : \mathbb{R}^n \to S$, where $S \subseteq \mathbb{R}^n$ is a subspace. If P is a projection matrix, so is (I - P). We can uniquely decompose:

$$x = u + v$$
 where $u \in S$, $v \in S^{\perp}$ $(u = Px, v = (I - P)x)$

Pythagorean theorem: $||x||_2^2 = ||u||_2^2 + ||v||_2^2$

If $A \in \mathbb{R}^{m \times n}$ has linearly independent columns, then the projection onto R(A) is given by $P = A(A^TA)^{-1}A^T$.

Least-squares: decompose *b* using the projection above:

$$b = A(A^{T}A)^{-1}A^{T}b + (I - A(A^{T}A)^{-1}A^{T})b$$

= $A\hat{x} + (b - A\hat{x})$

Where $\hat{x} = (A^T A)^{-1} A^T b$ is the LS estimate. Therefore the optimal residual is orthogonal to $A\hat{x}$.

The singular value decomposition

Every $A \in \mathbb{R}^{m \times n}$ can be factored as

$$A = U_1 \sum_{1} V_1^{\mathsf{T}} \qquad \text{(economy SVD)}$$

$$(m \times n) = (m \times r)(r \times r)(n \times r)^{\mathsf{T}}$$

 U_1 is orthogonal, its columns are the *left singular vectors* V_1 is orthogonal, its columns are the *right singular vectors* Σ_1 is diagonal. $\sigma_1 \ge \cdots \ge \sigma_r > 0$ are the **singular values**

Complete the orthogonal matrices so they become square:

$$A_{(m \times n)} = \begin{bmatrix} U_1 & U_1 \\ (m \times m) \end{bmatrix} \begin{bmatrix} \Sigma_1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V_1^\mathsf{T} \\ V_2^\mathsf{T} \end{bmatrix} = U \Sigma V^\mathsf{T} \quad \text{(full SVD)}$$

The singular values σ_i are an intrinsic property of A. (the SVD is not unique, but every SVD of A has the same Σ_1)

Properties of the SVD

Singular vectors u_i , v_i and singular values σ_i satisfy

$$Av_i = \sigma_i u_i$$
 and $A^T u_i = \sigma_i v_i$

Suppose $A = U\Sigma V^{\mathsf{T}}$ (full SVD) as in previous slide.

- rank: rank(A) = r
- transpose: $A^{\mathsf{T}} = V \Sigma U^{\mathsf{T}}$
- pseudoinverse: $A^\dagger = V_1 \Sigma_1^{-1} U_1^\mathsf{T}$

Fundamental subspaces:

- $R(U_1) = R(A)$ and $R(U_2) = R(A)^{\perp}$ (range of A)
- $R(V_1) = N(A)^{\perp}$ and $R(V_2) = N(A)$ (nullspace of A)

Matrix norms:

•
$$||A||_2 = \sigma_1$$
 and $||A||_F = \sqrt{\sigma_1^2 + \dots + \sigma_r^2}$