MA1101R AY20/21 sem 2 github.com/jovyntls

• Ex2.24

- (a) if A and B are diagonal matrices of the same size, then AB = BA
- (b) if A is a square matrix, then $(A + A^T)$ is symmetric.
- (g) if $AA^T = 0$, then A = 0.
- **Ex2.61** if $A = PBP^{-1}$ then det(A) = det(B).
- **Ex3.24** if V and W are subspaces of \mathbb{R}^n ,
- $V \cap W$ is a subspace of \mathbb{R}^n
- $V \cup W$ is a subspace of $\mathbb{R}^n \leftrightarrow V \subseteq W$ or $W \subseteq V$
- **Ex3.30** let u_1, u_2, \ldots, u_k be vectors in \mathbb{R}^n and P be a square matrix of order n.
- if Pu_1, Pu_2, \ldots, Pu_k are linearly independent, then u_1, u_2, \ldots, u_k are linearly independent
- if P is invertible and u_1, u_2, \ldots, u_k are linearly independent, then Pu_1, Pu_2, \ldots, Pu_k are linearly independent
- if P is NOT invertible and u_1, u_2, \ldots, u_k are linearly independent, then Pu_1, Pu_2, \ldots, Pu_k are NOT necessarily linearly independent
- Ex4.10 the linear relations between columns are not changed by row operations.
- **Ex4.22** let A be a $m \times n$ matrix and P be a $m \times m$ matrix. If P is invertible, rank(PA) = rank(A)
- **Ex4.25** let A be a $m \times n$ matrix.
- The nullspace of A is equal to the nullspace of $A^T A$.
- nullity(A) = nullity($A^T A$)
- rank(A) = rank($A^T A$)
- **Ex5.32** Let A be an orthogonal matrix. u, v are vectors in \mathbb{R}^n .
- $\bullet \|u\| = \|Au\|$
- d(u, v) = d(Au, Av)
- angle between u and v = angle between Au and Av
- Ex5.32 Let A be an orthogonal matrix and $S = \{u_1, u_2, \dots, u_n\}$ be a basis for \mathbb{R}^n .
- $T = \{Au_1, Au_2, \dots, Au_n\}$ is a basis for \mathbb{R}^n .
- if S is orthogonal, T is orthogonal.
- if S is orthonormal, T is orthonormal.
- **Ex5.34** A is an orthogonal matrix \Leftrightarrow the columns/rows of A form an orthonormal basis for \mathbb{R}^n .
- **Ex6.23** if A is diagonalisable, A^T is diagonalisable
- **Ex6.26** if A is symmetric and u, v are 2 eigenvectors of A associated with λ and μ , where $\lambda \neq \mu$, then $u \cdot v = 0$.
- Ex7.10 a linear operator T is an isometry if ||T(u)|| = ||u|| for all $u \in \mathbb{R}^n$.
- (a) $T(u) \cdot T(v) = u \cdot v$ for all $u, v \in \mathbb{R}^n$
- (b) T is an isometry \leftrightarrow the standard matrix is an orthogonal matrix
- (c) all isometries on \mathbb{R}^n are of the form

$$T(\binom{x}{y}) = \binom{x\cos\theta + \delta y\sin\theta}{y\sin\theta - \delta y\cos\theta} \text{ for } \binom{x}{y} \in \mathbb{R}^2 \text{ where } \delta = \pm 1 \text{ and } 0 \leq \theta < 2\pi$$

- LAB4 if AA^T is a diagonal matrix, then the rows of A form an orthogonal set.
- LAB4 if AA^T is an identity matrix, then the rows of A form an orthonormal set.
- to show A is invertible: show $\exists B \text{ s.t. } AB = I \text{ and } BA = I$