solution to a linear equation

- inconsistent → has no solution
- solution → a point of intersection
- solution set of the equation → set of all solutions to the equation
 - $\{(1+s,2s,s)|s \in \mathbb{R}\}$
- general solution of the equation → expression that gives us all the solutions to the equation

$$egin{array}{c} egin{array}{c} x=t \ y=2t-1 \end{array}$$

homogenous linear systems

- homogenous → rightmost column is all zeros
 - has at least one solution (the trivial solution)
- trivial solution $\rightarrow x_1, x_2, \dots, x_n = 0$
- non-trivial solution → any other solution

- a homogenous system of linear equations has either
- * only the trivial solution, or
- * infinitely many solutions AND trivial solution

elementary row operations

- 1. multiply equation by a non-zero constant
 - $cR_i, c \neq 0$
- 2. interchange 2 equations
 - $R_i \leftrightarrow R_i$
- 3. add a multiple of one equation to another equation
 - $R_i + cR_i, c \in \mathbb{R}$
 - convention: R_i (first row written) changes

★ TAKE NOTE: cannot multiply by zero or divide by zero ⇒ split cases if you want to multiply/divide by a variable!!

(R)REF

every matrix has a unique RREF but can have multiple REF.

- no solution if last column is a pivot column
- unique solution if every column is a pivot column
- · infinite solutions if there is a non-pivot column (besides last column)
 - non pivot column = arbitrary parameter

inverse

- UNIQUENESS OF INVERSES → if B and C are inverses of A, then B=C.
- CANCELLATION LAWS → applies if A is invertible
 - if B_1 and B_2 are $m \times n$ matrices such that $AB_1 = AB_2$, then $B_1 = B_2$.
 - if C_1 and C_2 are $m \times n$ matrices such that $C_1 A = C_2 A$, then $C_1 = C_2$.
- $\underline{2x2 \text{ INVERSE}} \rightarrow \text{if } A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then

$$A^{-1} = rac{1}{ad-bc} \left[egin{array}{cc} d & -b \ -c & a \end{array}
ight]$$

properties

if A, B are invertible matrices and c is a nonzero scalar,

- cA is invertible; $(cA)^{-1} = \frac{1}{c}A^{-1}$
- A^{T} is invertible: $(A^{T})^{-1} = (A^{-1})^{T}$
- A^{-1} is invertible; $(A^{-1})^{-1} = A$
- AB is invertible; $(AB)^{-1} = B^{-1}A^{-1}$
- $(A^n)^{-1} = (A^{-1})^n$

if A, B are square matrices of the same size and AB = I, then

- A and B are invertible
- $A^{-1} = B$: $B^{-1} = A$
- BA = I

singular matrices

let A, B be square matrices of the same size.

- ullet if A is singular, then AB and BA are singular
- if AB is singular, then A or B is singular. (or both)

transpose

- $(A^T)^T = A$
- $(A+B)^T = A^T + B^T$
- if c is a scalar, then $(cA)^T = cA^T$
- $(AB)^T = B^T A^T$

conditions for invertibility

$$\mathsf{let}\, A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

- A is invertible $\iff \det(A) = ad bc \neq 0$
- ullet A is invertible \Longleftrightarrow RREF is the identity matrix

if the REF of A has at least one singular (zero) row, then A is NOT invertible

equivalent statements for invertibility

let A be a square matrix. then the following statements are equivalent:

- 1. A is invertible
- 2. the linear system Ax = 0 has only the trivial solution
- 3. the RREF of A is the identity matrix
- 4. A can be expressed as a product of elementary matrices

adjoints

if A is an invertible matrix, then

$$A^{-1} = rac{1}{\det(A)} adj(A)$$

cramer's rule

- to solve linear systems $\Rightarrow x_i = \frac{\det(A_i)}{\det(A)}$
 - where $\det(A_i)$ is obtained from replacing the i^{th} column of A by b.

elementary row operations

- $E_3E_2E_1A = B$
 - $A = E_1^{-1} E_2^{-1} E_3^{-1} B$

post-multiplication: becomes an elementary column operation ⇒ produces column equivalent matrix

determinant of elementary row operations

if E is an elementary matrix of the same size as A, det(B) = det(E) det(A) = det(EA)

- $ullet A \stackrel{kR_n}{\longrightarrow} B \quad \Rightarrow \quad \det(B) = k \det(A) \quad ; \quad \det(E) = k$
- $ullet A \overset{R_n \leftrightarrow R_m}{\longrightarrow} B \quad \Rightarrow \quad \det(B) = -\det(A) \quad ; \quad \det(E) =$
- $ullet A \overset{R_n + kR_m}{\longrightarrow} B \quad \Rightarrow \quad \det(B) = \det(A) \quad ; \quad \det(E) = 1$

operations on determinant

let A, B be square matrices of order n and let c be a scalar.

- $\det(cA) = c^n \det(A)$
- $\det(AB) = \det(A)\det(B)$
- $\det(A^{-1}) = \frac{1}{\det(A)}$

SHOELACE METHOD for 3x3 matrix

common determinants

- triangular matrix → product of diagonal entries
- square matrix $\rightarrow \det(A) = \det(A^T)$
- two identical rows/columns $\rightarrow \det(A) = 0$

solution sets

if a system of linear equation has n variables, then its solution set is a subset of \mathbb{R}^n .

the general solution to the linear system $\begin{cases} x+y+z=0 \\ x-y+2z=1 \end{cases}$

- vector form \Rightarrow $(x,y,z) = (\frac{1}{2} \frac{3}{2}t, -\frac{1}{2} + \frac{1}{2}t, t)$ where $t \in \mathbb{R}$
- implicit form $\rightarrow \{(x,y,z) \mid x+y+z=0 \text{ and } x-y+2z=0 \}$
- explicit form $\rightarrow \left\{ \left(\frac{1}{2} \frac{3}{2}t, -\frac{1}{2} + \frac{1}{2}t, t\right) \mid t \in \mathbb{R} \right\}$
 - (solution set)

terminology: vector spaces and subspaces

- a set V is a vector space \rightarrow if $V = \mathbb{R}^n$ or V is a subspace of \mathbb{R}^n .
- a set W is a subspace of $V \rightarrow$ if W is a vector space and $W \subseteq$ V.
 - W is a subspace of \mathbb{R}^n which lies completely inside V.
 - e.g. a line overlapping with a plane is a subspace of the plane

linear span: basic properties

Let
$$S=\{u_1,u_2,\cdots,u_n\}\subseteq\mathbb{R}^n.$$

- 1. $\mathbf{0} \in \operatorname{span}(S)$
- 2. $\forall v_1, v_2, \ldots, v_r \in \operatorname{span}(S)$ and $c_1, c_2, \ldots, c_r \in \mathbb{R}$, $c_1v_1 + c_2v_2 + \cdots + c_rv_r \in \operatorname{span}(S)$

consistent linear systems

$$egin{aligned} & \det S = \{u_1, u_2, \dots, u_n\} \ span(S) = \mathbb{R}^n \iff & ext{the linear system} \ u_1 & k_1 \ u_2 & k_2 \ \vdots & \vdots & \vdots \end{aligned}$$
 is consistent $orall k_1, k_2, \dots, k_n \in \mathbb{R}$

bases

S is a basis (plural bases) for V if

- 1. S is linearly independent
- 2. S spans V.

 \bigcirc basis of $V \rightarrow$ set of the smallest size that can span V

- basis of the zero space = \emptyset
- · every other space has infinite bases.

coordinate systems

the coordinate vector of V relative to S, $(v)_s = (c_1, c_2, \ldots, c_k) \in \mathbb{R}^k$

- $(v)_s \rightarrow \text{row vector}$
- $[v]_s \rightarrow \text{column vector}$
- lacksquare for $v\in V\subseteq \mathbb{R}^n$ and $(v)_s\in \mathbb{R}^k$, it is possible that n
 eq
- standard basis $E = \{e_1, e_2, \dots, e_n\}$ where $e_1 =$ $(1,0,\ldots,0), e_2=(0,1,\ldots,0), e_n=(0,0,\ldots,1)$

properties

- any vector in \mathbb{R}^n can be expressed uniquely in the standard basis
 - $(u)_E = (u_1, u_2, \dots, u_n) = u$.
- two vectors are equal \iff their coordinates are equal (in any basis)
 - For any $u, v \in V, u = v \iff (u)_S = (v)_S$
- linear combination
 - For any $v_1, v_2, \ldots, v_r \in V$ and $c_1, c_2, \ldots, c_r \in \mathbb{R}$, $(c_1v_1 + c_2v_2 + \cdots + c_rv_r)_S = c_1(v_1)_S + c_2(v_2)_S +$ $\cdots + c_r(v_r)_S$.

subspaces

subspace → the span of a set of vectors in Rⁿ

Let V be a subset of \mathbb{R}^n . V is a subspace of \mathbb{R}^n if $V = \operatorname{span}(S)$ for some vectors $u_1, u_2, \ldots, u_k \in \mathbb{R}^n$.

A subspace $V \subseteq \mathbb{R}^n$

- (i) (Contains the origin) $O \in V$
- (ii) (Closed under linear combinations) $\forall u, v \in$ $V, \alpha, \beta \in \mathbb{R}, \alpha u + \beta v \in V$
- V is a subspace spanned by S
 - V is a subspace spanned by u_1,u_2,\ldots,u_k
- S spans V
 - u_1, u_2, \ldots, u_k spans V

dimensions

- $\dim(V)$, dimension of a vector space $V \to$ number of vectors in a basis for V.
 - dimension of zero space = 0
 - $\dim(\mathbb{R}^n) = n$

dimension of solution space = # of non-pivot columns

equivalent statements

Let V be a vector space of dimension k and S is a subset of V.

- 1. S is a basis for V
 - i.e. S is linearly independent and S spans V
- 2. S is linearly independent and |S| = k.
- 3. S spans V and |S| = k.

any 2 of 3 conditions: S is a basis of V

- 1. S is linearly independent
- 2. S spans V

important properties

• REF has no zero row $\Rightarrow span(S) = \mathbb{R}^n$

$$egin{aligned} \operatorname{Let} S &= \{u_1, u_2, \cdots, u_k\} \subseteq \mathbb{R}^n \ k &< n \Rightarrow span(S)
eq \mathbb{R}^n \end{aligned}$$

- one vector cannot span \mathbb{R}^2 ;
- ullet one vector or two vectors cannot span \mathbb{R}^3

subsets

- to show span $\{u_1, u_2, u_3\} \subseteq \operatorname{span}\{v_1, v_2\}$:
 - show that u_1, u_2, u_3 are **linear combinations** of v_1, v_2
 - RREF of $[\,v_1 \;\; v_2 \;\;|\; u_1 \;|\; u_2 \;|\; u_3\,\,]$ is consistent
- to show span $\{u_1,u_2,u_3\}\subseteq V$:
 - show that u_1, u_2 can be subbed into V (implicit form)
 - if $v_1, v_2, \dots, v_m \in span(S) \Rightarrow span\{v_1, v_2, \dots, v_m\} \subseteq span(S)$
- to show A = B:
 - show that $A\subseteq B\wedge B\subseteq A$

linear independence

$$c_1u_1 + c_2u_2 + \cdots + c_ku_k = 0 \quad (*)$$

- $S = \{0\}$ is linearly dependent!
- if (*) only has the $\underline{\text{trivial solution}}$, then S is a $\underline{\text{linearly independent}}$ set
- if (*) has non-trivial solutions, S is a linearly dependent set

- a set of vectors is linearly (in)dependent \iff they are linearly (in)dependent in the other basis
 - v_1, v_2, \ldots, v_r are <u>linearly (in)dependent</u> in $V \iff (v_1)_S, (v_2)_S, \ldots, (v_r)_S$ are <u>linearly (in)dependent</u> vectors in \mathbb{R}^k .
- a set of vectors spans V \iff their coordinate vectors relative to S span \mathbb{R}^k .
 - $\operatorname{span}\{v_1, v_2, \dots, v_r\} = V \iff \operatorname{span}\{(v_1)_S, (v_2)_S, \dots, (v_r)_S\} = \mathbb{R}^k$

invertible matrices

let A be a square matrix. the following statements are equivalent:

- 1. A is invertible
- 2. the linear system Ax=0 has only the trivial solution
- 3. RREF of A is the identity matrix
- 4. A can be expressed as a product of elementary matrices
- 5. $\det(A) \neq 0$
- 6. The rows of A form a basis for \mathbb{R}^n .
- 7. The columns of A form a basis for \mathbb{R}^n .

redundant vectors

- · is a linear combination of the rest
- if u_k is a linear combination of $u_1,u_2,\ldots,u_{k-1},$ then $span\{u_1,u_2,\ldots,u_{k-1}\}=span\{u_1,u_2,\ldots,u_{k-1},u_k\}$

3.
$$|S| = k$$

jovyntls

dimensions of subspaces

Let U be a subspace of vector space V. Then $\dim(U) \leq \dim(V)$. If $\dim(U) = \dim(V)$ then U = V.

- a subset T of V with $|T|>\dim(V)$ must be linearly dependent.

transition matrix

$$ullet P = ig[[u_1]_T \quad [u_2]_T \quad \cdots \quad [u_k]_T \ ig] ext{ for } S = \{u_1,u_2,\ldots,u_k\}$$

$$\left[egin{array}{c|c} T & \mid & S \end{array} \right] \stackrel{ ext{G-J Elimination}}{\longrightarrow} \left[egin{array}{c|c} I & \mid & P \end{array}
ight] \ \left[w
ight]_T = P[w]_S$$

- ullet P is the transition matrix from S to T
- P^{-1} is the transition matrix from T to S.

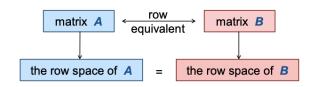
row & column space

- row space \rightarrow the subspace of \mathbb{R}^n spanned by rows of A
 - $=\operatorname{span}\{r_1,r_2,\ldots,r_m\}\subseteq\mathbb{R}^n$
 - = column space of A^T

$$= ext{column space of } A^1$$
 $ext{where } A = egin{bmatrix} r_1 \ dots \ r_m \end{bmatrix}, \ r_i = egin{bmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \end{bmatrix}, \ ext{or } A = egin{bmatrix} c_1 & \cdots & c_n \end{bmatrix}, \ c = egin{bmatrix} a_{1j} \ dots \ a_{mj} \end{bmatrix}$

- column space \rightarrow the subspace of \mathbb{R}^n spanned by the columns of A
 - $=\operatorname{span}\{c_1,c_2,\ldots,c_n\}\subseteq\mathbb{R}^n$
 - = row space of A^T
 - $= \{Au \mid u \in \mathbb{R}^n\}$
 - · basis of column space of A is obtained by the columns of A that correspond to pivot columns of the REF

row equivalence



- matrices are row-equivalent \iff they have the same **RREF**.
- ✓ reflexive, symmetric and transitive
- elementary operations preserve row space

ranks

- rank of a matrix → the dimension of its row space (and column space).
 - the row space and column space of a matrix has the same dimension. For REF: # of nonzero rows = # of pivot columns
- full rank \rightarrow rank $(A) = \min\{m, n\}$ for a matrix A of size $m \times n$
 - square matrix has full rank $\iff \det(A) \neq 0$
- properties
 - $\operatorname{rank}(0) = 0$, $\operatorname{rank}(I_n) = n$, $\operatorname{rank}(A) = A^T$
 - $\operatorname{rank}(A) \leq \min\{m, n\}$ for a $m \times n$ matrix A
 - $rank(AB) < min\{rank(A), rank(B)\}$

linear systems

- a linear system Ax = b is consistent
 - \iff b lies in the column space of A
 - $\iff A \text{ and } (A \mid b) \text{ have the same rank.}$
- a consistent linear system Ax=b has only one solution
 - \iff the nullspace of A is $\{0\}$
- suppose v is a solution of the linear system Ax = b.
 - solution set of the system
 - $= \{u + v \mid u \text{ is an element of the nullspace of } A\}.$

nullspace & nullites

- nullspace (of A) → the solution space of the homogenous linear system Ax=0
- $\frac{\text{nullity}}{\text{nullity}}$ (of A) \rightarrow dimension of the nullspace of A
 - $\operatorname{nullity}(A) = \dim(\operatorname{nullspace} \operatorname{of} A)$
 - $\operatorname{nullity}(A) \leq \dim(\mathbb{R}^n) = n$

dimension theorem

- $rank(A^T) + nullity(A^T) = number of rows in A$
- rank(A) + nullity(A) = number of columns in A

dot product

- distance $\rightarrow d(u,v) = ||u-v||$
- norm/length $\rightarrow \parallel u \parallel = \sqrt{u \cdot u} = \sqrt{u_1^2 + u_2^2 + \dots + u_n^2}$
 - unit vector → vectors of norm 1
- $\operatorname{\mathsf{dot}} \operatorname{\mathsf{product}}
 ightarrow u \cdot v = uv^T = \sum_{i=1}^n u_i v_i$
 - $=u_1v_1+u_2v_2+\cdots+u_nv_n$
- angle between u and $v \rightarrow$

$$\begin{array}{l} \theta = \cos^{-1}(\frac{u \cdot v}{\|u\| \|v\|}) = \cos^{-1}(\frac{\|u\|^2 + \|v\|^2 - \|u - v\|^2}{2\|u\| \|v\|}) \\ \text{in } \mathbb{R}^n : \theta = \cos^{-1}(\frac{u_1 v_1 + u_2 v_2 + \dots + u_n v_n}{\|v_1\| \|v\|}) \end{array}$$

cosine rule:

$$||u-v||^2 = ||u||^2 + ||v||^2 - 2||u|| ||v|| \cos \theta$$

basic properties

- symmetric $\rightarrow u \cdot v = v \cdot u$
- distributivity $\Rightarrow w \cdot (u+v) = w \cdot u + w \cdot v$
- scalar multiplication $\rightarrow (cu) \cdot v = u \cdot (cv) = c(u \cdot v)$
 - vectors are NOT associative $(u \cdot v) \cdot w \neq u \cdot (v \cdot w)$
- scalar multiplication for length $\rightarrow ||cu|| = |c|||u||$
- positive definite $\Rightarrow u \cdot u \ge 0$
 - $u \cdot u = 0 \iff u = 0$
- cauchy-schwarz inequality $\rightarrow |u \cdot v| < ||u|| ||v||$
- triangle inequality $\rightarrow ||u+v|| < ||u|| + ||v||$
- distance between vectors $\rightarrow d(u, w) < d(u, v) + d(v, w)$

orthogonality

- orthogonal $\rightarrow u \cdot v = 0$, $\theta = \frac{\pi}{2}$
 - ullet 0 is orthogonal to every subspace and the whole \mathbb{R}^n
- orthogonal set → every pair of distinct vectors are orthogonal
 - a set containing only <u>one (non-zero) vector</u> is always an orthogonal set
 - orthogonal ⇒ linearly independent
 - but linear independence ⇒ orthogonality
- orthonormal set → orthogonal set; every vector is a unit vector
 - e.g. standard basis $E = \{e_1, e_2, \dots, e_n\}$ for \mathbb{R}^n
 - 0 cannot be normalised ⇒ a set containing a zero vector cannot be orthonormal

orthogonal/orthonormal bases

- to show that S is an orthogonal/orthonormal basis for V:
 - 1. S is orthogonal/orthonormal (\Rightarrow linear independence)
 - 2. $|S| = \dim(V)$ or span(S) = V

orthogonal bases

Let $S = \{u_1, u_2, \dots, u_n\}$ be an orthogonal basis for V.

Then for any
$$w \in V$$
, $w = \frac{w \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{w \cdot u_2}{u_2 \cdot u_2} u_2 + \dots + \frac{w \cdot u_k}{u_k \cdot u_k} u_k$ $(w)_S = \left(\frac{w \cdot u_1}{u_1 \cdot u_1}, \frac{w \cdot u_2}{u_2 \cdot u_2}, \dots, \frac{w \cdot u_k}{u_k \cdot u_k}\right)$

orthonormal bases

Let $S = \{u_1, u_2, \dots, u_n\}$ be an orthonormal basis for V. Then for any $w \in V$.

$$w = (w \cdot v_1)v_1 + (w \cdot v_2)v_2 + \dots + (w \cdot v_k)v_k \ (w)_S = (w \cdot v_1, \ w \cdot v_2, \ \dots, \ w \cdot v_k)$$

the solution space of a matrix is **orthogonal** to its row space.

projections

Let V be a subspace of \mathbb{R}^n .

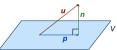
Every $\mathbf{u} \in \mathbb{R}^n$ can be written uniquely as

u = n + p

where p is a vector in V

and n is a vector orthogonal to V.

The vector p is called the (orthogonal) projection of u onto V.



A vector $u \in \mathbb{R}^n$ is orthogonal to V is u is orthogonal to all vectors in V.

orthogonal bases & projections

let V be a subspace for \mathbb{R}^n and $\{u_1,u_2,\ldots,u_k\}$ an <u>orthogonal basis</u> for V.

$$egin{aligned} & ext{for any } \mathbf{w} \in \mathbb{R}^n, \ rac{w \cdot u_1}{u_1 \cdot u_1} u_1 + rac{w \cdot u_2}{u_2 \cdot u_2} u_2 + \cdots + rac{w \cdot u_k}{u_k \cdot u_k} u_k \ & ext{is the projection of } \mathbf{w} ext{ onto } V. \end{aligned}$$

orthonormal bases & projections

let V be a subspace for \mathbb{R}^n and $\{v_1, v_2, \dots, v_k\}$ an <u>orthonormal basis</u> for V.

$$ext{for any } \mathbf{w} \in \mathbb{R}^n, \ (w \cdot u_1)u_1 + (w \cdot u_2)u_2 + \cdots + (w \cdot u_k)u_k \ ext{is the projection of } \mathbf{w} ext{ onto } V.$$

Gram-Schmidt Process

Let $\{u_1, u_2, ..., u_k\}$ be a basis for a vector space V.

$$\mathbf{v}_2 = \mathbf{u}_2 - \frac{\mathbf{u}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1,$$

$$\mathbf{v}_3 = \mathbf{u}_3 - \frac{\mathbf{u}_3 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{u}_3 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2,$$

$$\mathbf{v}_{k} = \mathbf{u}_{k} - \frac{\mathbf{u}_{k} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} - \frac{\mathbf{u}_{k} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2} - \dots - \frac{\mathbf{u}_{k} \cdot \mathbf{v}_{k-1}}{\mathbf{v}_{k-1} \cdot \mathbf{v}_{k-1}} \mathbf{v}_{k-1}$$

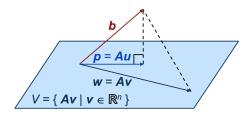
Then $\{v_1, v_2, ..., v_k\}$ is an orthogonal basis for V.

chapter 5.3-5.4

jovyntls

best approximations

a vector $u \in \mathbb{R}^n$ is a **least squares solution** to the linear system Ax = b $\iff p = Au$ is the **best approximation** of b onto the column space of A $\iff p = Au$ is the **projection** of b onto the column space of A.



p is the best approximation of u in V.

$$d(u,p) \leq d(u,v) \quad ext{for all } v \in V$$
 $\parallel b - Au \parallel < \parallel b - Av \parallel \quad ext{for all } v \in \mathbb{R}^n$

least squares solution

• u is the **least squares solution** to the system Ax=b $\iff b=Au$ is orthogonal to a_1,a_2,\ldots,a_n ($A=[a_1\ a_2\ \ldots\ a_n]$) $\iff u$ is a solution to $A^TAx=A^Tb$

finding least squares solution

- <u>using projection</u>: x is a least squares solution $\iff Ax = p$, where p is the projection of b on the column space of A (using Gram-Schmidt)
- without projection: use $A^TAx = A^Tb$
- find projection of a vector onto a span using least squares solution:
 - let the span be the column space of matrix A. let the vector be b.
 - let u be the solution to the linear system $A^TAx = A^Tb$
 - projection = Au (u is any least squares solution)

orthogonal matrices

• orthogonal $\rightarrow A^{-1} = A^T$ (a square matrix)

transition matrices

let S and T form two <u>orthonormal bases</u> for a vector space; let P be the transition matrix from S to T.

- P is an orthogonal matrix.
- $P^T = P^{-1} = \text{transition matrix from } T \text{ to } S.$

rotation of xy-coordinates

let $E=\{e_1,e_2\}$ and $S=\{u_1,u_2\}$ where e_1,e_2,u_1,u_2 are unit vectors along the x,y,x',y' axes

- $u_1=(\cos\theta,\sin\theta)=e_1\cos\theta+e_2\sin\theta$
- $u_2=(-\sin\theta,\cos\theta)=-e_1\sin\theta+e_2\cos\theta$
- transition matrix from S to E_{i}

$$P = egin{bmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{bmatrix}$$

• P^T = transition matrix from E to S

conversion from xy to x'y'

Let $v=(x,y)\in\mathbb{R}^2,\quad (v)_S=(x',y').$

$$egin{bmatrix} egin{bmatrix} x' \ y' \end{bmatrix} = egin{bmatrix} v ig]_S = P^T ig[v ig]_E = egin{bmatrix} \cos heta & \sin heta \ -\sin heta & \cos heta \end{bmatrix} egin{bmatrix} x \ y \end{bmatrix} \ x' = x \cos heta + y \sin heta \ y' = -x \sin heta + y \cos heta \end{bmatrix}$$

equivalent statements

- 1. A is orthogonal
- 2. the rows of A form an orthonormal basis for \mathbb{R}^n
- 3. the columns of A form an orthonormal basis for \mathbb{R}^n

eigenvalues & eigenvectors

let A be a square matrix of order n.

- eigenvector ightarrow a nonzero column vector $u \in \mathbb{R}^n$ such that $Au = \lambda u$ for a scalar λ (eigenvalue)
 - u is an eigenvector of A associated with λ
 - $Au \in \operatorname{span}\{u\}$
- for eigenvectors u,v,w , $[\begin{array}{ccc} u&v&w\end{array}]^{-1}A[\begin{array}{ccc} u&v&w\end{array}]=[\lambda_u\ \lambda_v\ \lambda_w]$
- triangular matrix → eigenvalues are the diagonal entries
- row operations DO NOT preserve eigenvalues
- transpose preserves eigenvalues!!

characteristic polynomials

• λ is an eigenvalue for A

$$\iff \exists u \in \mathbb{R}^n \setminus \{0\} \mid (\lambda I - A)u = 0$$
$$\iff \det(\lambda I - A) = 0$$

- characteristic equation of $A \to \det(\lambda I A) = 0$
- characteristic polynomial of $A \to \det(\lambda I A)$
 - eigenvalue \iff it is a root of the polynomial

every odd degree polynomial has at least one real root

eigenspaces

- E_{λ} or $E_{\lambda}(A) \rightarrow$ eigenspace of A associated with the eigenvalue λ
- eigenspace \rightarrow all eigenvectors of A associated with λ
 - all vectors u such that $Au = \lambda u$
 - solution space of the linear system $(\lambda I A)x = 0$
 - always a subspace of \mathbb{R}^n
- if u is a <u>nonzero</u> vector in E_{λ} , u is an eigenvector of A associated with λ

diagonalization

- diagonalizable \rightarrow there exists an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix.
 - P diagonalizes A.
 - $n \times n$ square matrix A is diagonalisable $\iff A$ has n linearly independent eigenvectors

diagonalizing a matrix

Let A be a square matrix of order n.

Step 1: Find all distinct eigenvalues λ_1 , λ_2 , ..., λ_k (say, by solving the characteristic equation $\det(\lambda I - A) = 0$).

Step 2: For each eigenvalue λ_i , find a basis S_{λ_i} for the eigenspace E_{λ_i} .

Step 3: Let $S = S_{\lambda_1} \cup S_{\lambda_2} \cup \cdots \cup S_{\lambda_n}$.

- (a) If |S| < n, then \overline{A} is not diagonalizable.
- (b) If |S| = n, say, $S = \{u_1, u_2, ..., u_n\}$, then A is diagonalizable and $P = [u_1 \ u_2 \ \cdots \ u_n]$ is an invertible matrix that diagonalizes A.

power of matrices

suppose A is invertible (i.e. $\lambda_i
eq 0$ for all i). Then

$$A^{-1} = P egin{bmatrix} \lambda_1^{-1} & 0 & \cdots & 0 \ 0 & \lambda_2^{-1} & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & \lambda_n^{-1} \end{bmatrix} P^{-1}$$

For any $m\in\mathbb{Z}^+$,

$$A^{-m}=Pegin{bmatrix} \lambda_1^{-m} & 0 & \cdots & 0 \ 0 & \lambda_2^{-m} & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & \lambda_n^{-m} \end{bmatrix}P^{-m}$$

orthogonal diagonalization

- orthogonally diagonalizable \rightarrow there exists an orthogonal matrix P such that $P^TAP = D$ (D is a diagonal matrix)
 - orthogonally diagonalizable \iff symmetric ($A^T = A$)
 - P orthogonally diagonalizes A.
 - uses orthonormal bases for diagonalisation

how to orthogonally diagonalize

Let \boldsymbol{A} be a symmetric matrix of order \boldsymbol{n} .

Step 1: Find all distinct eigenvalues λ_1 , λ_2 , ..., λ_k (by solving the characteristic equation $\det(\lambda I - A) = 0$).

Step 2: Find each eigenvalue λ_i ,

- (a) find a basis S_{λ_i} for the eigenspace E_{λ_i} , and then
- (b) use the Gram-Schmidt Process (Theorem 5.2.19) to transform S_{λ_i} to an orthonormal basis T_{λ_i} .

Step 3: Let
$$T = T_{\lambda_1} \cup T_{\lambda_2} \cup \cdots \cup T_{\lambda_k}$$
, say, $T = \{ v_1, v_2, ..., v_n \}$.
Then $P = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$ is an orthogonal matrix

that orthogonally diagonalizes A.

- 1. A is invertible
- 2. the linear system Ax=0 has only the trivial solution
- 3. RREF of A is the identity matrix
- 4. A can be expressed as a product of elementary matrices
- 5. $\det(A) \neq 0$
- 6. The rows of A form a basis for \mathbb{R}^n .
- 7. The columns of A form a basis for \mathbb{R}^n .
- 8. $\operatorname{rank}(A) = n$
- 9. 0 is not an eigenvalue of A.

checking if a matrix is diagonalizable

suppose the **characteristic polynomial** of A is factorised as

$$\det(\lambda I - A) = (\lambda - \lambda_1)^{r_1} (\lambda - \lambda_2)^{r_2} \cdots (\lambda - \lambda_k)^{r_k}$$
 where $\lambda_1, \dots, \lambda^k$ are distinct eigenvalues of A .

 A is diagonalizable

 $\iff \dim(E_{\lambda_i}) = r_i \quad \text{for each eigenvalue } \lambda_i$
 $\iff |S_{\lambda_i}| = r_i$

- $r_1 + r_2 + \cdots + r_k = n$
- ullet if any one of the eigenspaces has dimensions less than r_i , then the matrix is not diagonalizable
- If A has n distinct eigenvalues, then A is diagonalisable.

linear tranformations from $\mathbb{R}^n o \mathbb{R}^m$

- linear transformation \rightarrow a mapping : $\mathbb{R}^n \rightarrow \mathbb{R}^m$ of the form
 - if n=m, then T is a linear operator on \mathbb{R}^n

$$T\left(egin{bmatrix} x_1 \ x_2 \ dots \ x_n \end{bmatrix}
ight) = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & dots \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} egin{bmatrix} x_1 \ x_2 \ dots \ \vdots & dots & dots \ x_n \end{bmatrix} = egin{bmatrix} a_{11}x_1 & a_{12}x_2 & \cdots & a_{1n}x_n \ a_{21}x_1 & a_{22}x_2 & \cdots & a_{2n}x_n \ dots & dots & dots \ a_{m1}x_1 & a_{m2}x_2 & \cdots & a_{mn}x_n \end{bmatrix} = egin{bmatrix} a_{m1}x_1 & a_{m2}x_2 & \cdots & a_{mn}x_n \ dots & dots & dots \ a_{m1}x_1 & a_{m2}x_2 & \cdots & a_{mn}x_n \ dots & dots & dots \ a_{m1}x_1 & a_{m2}x_2 & \cdots & a_{mn}x_n \ dots & dots & dots & dots \ a_{m1}x_1 & a_{m2}x_2 & \cdots & a_{mn}x_n \ dots & dots & dots & dots & dots \ a_{m1}x_1 & a_{m2}x_2 & \cdots & a_{mn}x_n \ dots & d$$

- the matrix $(a_{ij})_{m \times n}$ is the standard matrix for T.
 - linear transformation = multiplication by the standard matrix

alternative definition

(respects linear combinations)

let V and W be vector spaces.

a mapping T:V o W is a linear transformation \iff

$$T(cu+dv)=cT(u)+dT(v) \quad orall u,v\in V ext{ and } c,d\in \mathbb{R}$$

common mappings

- identity mapping, $I:\mathbb{R}^n o \mathbb{R}^n$
 - standard matrix for I is the **identity matrix** I_n
 - I is a **linear operator** on \mathbb{R}^n
- $\operatorname{\mathsf{zero\ mapping}}, O: \mathbb{R}^n o \mathbb{R}^m$
 - standard matrix for O is the **zero matrix** $\mathbf{0}_{m \times n}$

basic properties

let $T:\mathbb{R}^n o \mathbb{R}^m$ be a linear transformation.

- T(0) = 0
- if $u_1,u_2,\ldots,u_k\in\mathbb{R}^n$ and $c_1,c_2,\ldots,c_k\in\mathbb{R}$, then $T(c_1u_1+c_2u_2+\cdots+c_ku_k)=c_1T(u_1)+c_2T(u_2)+\cdots+c_kT(u_k)$

standard matrices

for $T:\mathbb{R}^n o \mathbb{R}^m$,

• standard matrix, $A \rightarrow [T(e_1) \quad T(e_2) \quad \cdots \quad T(e_n)]$

$$T(e_i) = Ae_i = egin{bmatrix} a_{1j} \ a_{2j} \ dots \ a_{mi} \end{bmatrix} =$$
 the i^{th} column of A

• image of basis vectors of the standard basis

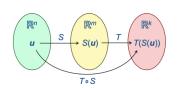
bases for \mathbb{R}^n

 $egin{aligned} &\det\left\{u_1,u_2,\ldots,u_n
ight\} ext{ be a basis for }\mathbb{R}^n. \ & ext{for any vector }v\in\mathbb{R}^n,\,v=c_1u_1+c_2u_2+\cdots+c_nu_n \ & ext{for some }c_1,\ldots,c_n\in\mathbb{R}^n \end{aligned}$

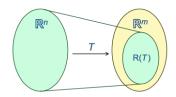
- $\{u_1, u_2, \dots, u_n\}$ are the basis vectors
- the image T(v) of v is completely determined by the images $T(u_1), T(u_2), \ldots, T(u_n)$ of the basis vectors

compositions of mappings

- composition of T with S o a mapping from \mathbb{R}^n to \mathbb{R}^k defined by $(T\circ S)(u)=T(S(u))$ for $u\in\mathbb{R}^n$
- for all $u \in \mathbb{R}^n$, $(T \circ S)(u) = T(S(u)) = T(Au) = BAu$
 - BA is the standard matrix of $T\circ S$

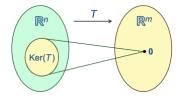


range



- range of T, $R(T) \rightarrow$ the set of images of T
 - $R(T) = \{T(u) \mid u \in \mathbb{R}^n\} \subseteq \mathbb{R}^m$
 - $R(T) = \text{span}\{T(u_1), T(u_2), \dots, T(u_n)\}$
 - ullet R(T)= the column space of the standard matrix A
- rank of $T \to$ the dimension of R(T)
 - $\operatorname{rank}(T) = \dim(R(T)) = \dim(\operatorname{column} \operatorname{space} \operatorname{of} A) = \operatorname{rank}(A)$

kernel



- kernel of T, $\ker(T) \to$ the set of vectors in \mathbb{R}^n whose image is the **zero vector** in \mathbb{R}^m
 - $\ker(T) = \{u \mid T(u) = 0\} \subset \mathbb{R}^n$
 - ullet $\ker(T)=$ the nullspace of the standard matrix A
- the **nullity** of T is the dimension of $\ker(T)$.
 - $\operatorname{nullity}(T) = \dim(\ker(T)) = \operatorname{nullity}(A)$

dimension theorem for linear transformation

$$rank(T) + nullity(T) = n$$

= $rank(A) + nullity(A)$
= $number of columns in A$