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solution to a linear equation elementary row operations (R)REF
¢ inconsistent - has no solution 1. multiply equation by a non-zero constant
¢ solution - a point of intersection e ¢cR..c = 0 every matrix has a unique RREF but can have multiple REF.
(3} v
¢ solution set of the equation - set of all solutions to the equation 2. interchange 2 equations
. {(1 4 5.2s s)\s c R} « R &R * no solution if last column is a pivot column
’ ) (] J
- . . . . . . . iq lution if I i i [
¢ general solution of the equation - expression that gives us all 3. add a multiple of one equation to another equation unigue sollition if every column is a pivot column
the solutions to the equation « RitcRiccR « infinite solutions if there is a non-pivot column (besides last
_y ¢ 7 column)
. = « convention: R; (first row written) changes . .
y=2t—1 ¢ non pivot column = arbitrary parameter
. TAKE NOTE: cannot multiply by zero or divide by zero =
homogenous linear systems /{

split cases if you want to multiply/divide by a variable!!
¢ homogenous - rightmost column is all zeros

¢ has at least one solution (the trivial solution)
* trivial solution = x1, x9,...,x, =0

¢ non-trivial solution - any other solution

a homogenous system of linear equations has either
* only the trivial solution, or
* infinitely many solutions AND trivial solution
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inverse transpose elementary row operations
« UNIQUENESS OF INVERSES - if B and C are inverses of A, e (AT =4 « E3E,E;A=B
then B = C. « (A+B)T = AT + BT - A=E'E;'E;'B
o CANCELLATION LAWS - applies if A is invertible « ifcis a scalar, then (cA)T — cAT
o if By and By are m X m matrices such that AB; = AB,, . (AB)T — BT AT x post-multiplication: becomes an elementary column
then B; = B,. operation = produces column equivalent matrix
« if Cy and Cy are m X m matrices such that C1 A = Cy A, conditions for invertibility
then C; = Cs. [ a b ] determinant of elementary row operations
let A =
e 2x2INVERSE > if A = [ : Z ] , then d if F is an elementary matrix of the same size as A,
« Aisinvertible <= det(A) = ad —bc # 0 det(B) = det(E) det(A) = det(EA)
Al — 1 d —b » Aisinvertible <= RREF is the identity matrix kRn
ad—be| —c a e A— B = det(B)=kdet(4) ; det(E)=k
R, <Ry,
properties of if the REF of A has at least one singular (zero) row, then e A5 = det(B) = —det(4) ; det(E)=
. . . . . A'is NOT invertible -1
if A, B are invertible matrices and c is a nonzero scalar,
R7l+kRm
« cAisinvertible; (cA)™t =141 . . o «+ A —" B = det(B)=det(A) ; det(F)=1
¢ equivalent statements for invertibility
o AT ic: e (ATY-1 — (A-1\T
A s invertible; (A™) (47) let A be a square matrix. then the following statements are operations on determinant
« A-lici e (A-1)-1 — ; .
A~ s invertible; (A7) A equivalent: let A, B be square matrices of order n and let ¢ be a scalar.
. isi ible; 1=p141 1. Als invertibl
AB s invertible; (AB) B'A is invertible . det(cA) = ¢ det(A)
. (An)—l = (A—l)" 2. the linear system Az = 0 has only the trivial solution det(AB) = det(A) det(B)
e de =de e
if A, B are square matrices of the same size and AB = I, then 3. the RREF of A is the identity matrix . det(A1) = 1
T det(4
e A and B are invertible 4. A can be expressed as a product of elementary matrices e
« A'=B; B'=4 adjoints . SHOELACE METHOD for 3x3 matrix
« BA=1T
if A is an invertible matrix, then d .
Singular matrices o 1 adj(A) common determinants
let A, B be square matrices of the same size. det(A) * triangular matrix - product of diagonal entries
oo Ao . + square matrix > det(A4) = det(A7T)
if A is singular, then AB and B A are singular cramer's rule S
« if ABis singular, then A or B is singular. (or both) det(4;) * two identical rows/columns > det(4) = 0

¢ to solve linear systems = ; = qet(4)

» where det(A;) is obtained from replacing the it" column
of A by b.
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solution sets

if a system of linear equation has n variables, then its
solution set is a subset of R".

z+y+2=0

the general solution to the linear system
r—y+2z=1

* vectorform > (z,y,2) = (3 — 3t,—3 + 1t,t) wheret € R

« implicit form - {(z,y,2) |z +y+2z=0andz —y + 2z =
1}
« explicitform > {(3 — 3¢, —1 + 1¢,¢) [t e R}

¢ (solution set)

terminology: vector spaces and subspaces

* aset Visavector space = if V= R" or V is a subspace of
R™.

o aset W is asubspace of V = if W is a vector space and W C
V.

o W is a subspace of R™ which lies completely inside V.

¢ e.g. aline overlapping with a plane is a subspace of the plane

linear span: basic properties

Let S = {uy,ug, -+ ,u,} C R".
1. 0 € span(S)
2. Yuy,vs,...,v, € span(S)andcy,cy,. .., €ER,

civ1 + coug + -+ - + ¢v, € span(S)

consistent linear systems

let S = {ul,u2, . .,un}
span(S) = R" <= the linear system

Uq kl
U9 kz
. . is consistent Vki, ks,..., k, € R

bases
S is a basis (plural bases) for V' if

1. S'is linearly independent

2. Sspans V.
basis of V' - set of the smallest size that can span V'

« basis of the zero space = ()

e every other space has infinite bases.

coordinate systems

the coordinate vector of V relative to S,
(v)s = (c1,¢,...,c,) € R
* (v)s = row vector

* [v]s = column vector

I forv eV CR"and (v)s € RF, it is possible that e
k

+ standard basis E = {e1,e2,...,en} wheree; =
(1,0,...,0),e2 = (0,1,...,0),en = (0,0,...,1)
properties

« any vector in R™ can be expressed uniquely in the standard
basis

o (u)p = (w1,ug, -, up) = .

e two vectors are equal <> their coordinates are equal (in
any basis)

e Foranyu,v € V,u=v < (u)s = (v)g

¢ linear combination

e Foranywy,vs,...,v. € Vandep,c,...,¢ € R,
(c1v1 + covg + -+ + ¢vr)s = c1(v1)s + ca(v2)s +
"'+CT(vT)S'
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subspaces
» subspace - the span of a set of vectors in R"
Let V be a subset of R™. V is a subspace of R" if
V = span(S) for some vectors uy, ua, ..., u; € R".
A subspace V C R"
(¢) (Contains the origin) O € V

() (Closed under linear combinations) Yu,v €
Via,BeR,au+pPv eV

o V is a subspace spanned by S

* Vs asubspace spanned by u1, us, . .., Ui
e SspansV
* Uy, Ug,..., U, spans V
dimensions

+ dim(V'), dimension of a vector space V' = number of vectors in
a basis for V.

e dimension of zero space = 0

e dim(R™) =n

dimension of solution space = # of non-pivot columns

equivalent statements
Let V be a vector space of dimension k and S is a subset of V.
1. S'is a basis for V
e ie. Sislinearly independent and S spans V'
2. S'is linearly independent and |.S| = k.
3. Sspans V and |S| = k.

any 2 of 3 conditions: .S is a basis of I/

1. S'is linearly independent

2. Sspans V



important properties
« REF has no zero row = span(S) = R"
Let S = {uy,ug,- -+ ,u} C R,
k <n = span(S) # R"
* one vector cannot span R2;

e one vector or two vectors cannot span R3

subsets
* to show span{u;, us, us} C span{vy, vy} :
e show that uq, us, ug are linear combinations of vy, v
* RREFof [v1 vy | uy | ug | us]is consistent
* to show span{ui,u2,us} CV:
e show that uq, us can be subbed into V' (implicit form)

o ifvy,v9,...,0, € span(S) =
spanf{vy, vy, ...,vm} C span(S)

e toshow A = B:
e showthat AC BABCA
linear independence
ciuy +coug + -+ cpup =0 (%)

« S = {0} is linearly dependent!

« if (*) only has the trivial solution, then S is a linearly independent

set

« if (*) has non-trivial solutions, .S is a linearly dependent set

e aset of vectors is linearly (in)dependent <—> they are
linearly (in)dependent in the other basis

* v1,V9,...,0, are linearly (in)dependentin V <=
(v1)s, (v2)sg,- .., (v.)s are linearly (in)dependent
vectors in RF.

e aset of vectors spans V <= their coordinate vectors
relative to S span R¥.

» span{vy,vs,...,v.} =V <
span{(v1)s, (v2)s,---,(v)s} = R¥

invertible matrices

let A be a square matrix. the following statements are equivalent:

-

. Alis invertible
. the linear system Ax = 0 has only the trivial solution

. RREF of A is the identity matrix

2
3
4. A can be expressed as a product of elementary matrices
5. det(A) # 0

6. The rows of A form a basis for R™.

7

. The columns of A form a basis for R™.

redundant vectors
¢ is alinear combination of the rest

e if ug is a linear combination of uy, usg, ..., ux—_1, then

span{uy,us, ..., ux_1} = span{ui,ug,...,Us_1, Ug }

3.18=k

dimensions of subspaces

Let U be a subspace of vector space V.
Then dim(U) < dim(V).
If dim(U) = dim(V) then U = V.

* asubset T of V with |T| > dim(V') must be linearly
dependent.

transition matrix

o P=| [w]r [ug]r
{uy,ug,...,u}

[ug]r | for § =

o P s the transition matrix from S to T’

e P~1listhe transition matrix from T to S.

jovyntls
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row & column space

row space - the subspace of R" spanned by rows of A

= span{ry,re,...,rm} CR"
= column space of AT
T1
where A = , Ty = [ail Qg ain] ;
Tm
alj
orA:[cl cn],c: :
Omj

column space - the subspace of R™ spanned by the columns
of A

= span{ec, g, ...,cn} C R®
= row space of AT
={Au|ueR"}

¢ basis of column space of A is obtained by the columns of A
that correspond to pivot columns of the REF

row equivalence

matrix A (r_o_w) matrix B
equivalent

| the row space of A ‘ = ’ the row space of B |

matrices are row-equivalent <> they have the same RREF.
v reflexive, symmetric and transitive

elementary operations preserve row space

ranks

¢ rank of a matrix - the dimension of its row space (and column

space).

¢ the row space and column space of a matrix has the same
dimension. For REF: # of nonzero rows = # of pivot
columns

full rank - rank(A) = min{m, n} for a matrix A of size
mXxn

* square matrix has full rank <= det(A) = 0
properties

 rank(0) =0, rank(I,) = n,
o rank(A) < min{m,n}
 rank(AB) < min{rank(A),rank(B)}

rank(A) = AT

foram X m matrix A

linear systems

¢ alinear system Az = bis consistent

<> b lies in the column space of A

<= Aand (A | b) have the same rank.

« aconsistent linear system Az = b has only one solution

<= the nullspace of A is {0}

e suppose v is a solution of the linear system Az = b.

solution set of the system

= {u + v | uis an element of the nullspace of A}.
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nullspace & nullites

 nullspace (of A) - the solution space of the homogenous linear
system Az =0

 nullity (of A) - dimension of the nullspace of A
« nullity(A) = dim(nullspace of A)
+ nullity(4) < dim(R") =n

dimension theorem
+ rank(A7T) + nullity(AT) = number of rows in A

+ rank(A) + nullity(A) = number of columns in A
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dot product

« distance = d(u,v) = ||lu — v

orthogonality

e orthogonal > u-v =0,

0=%

norm/length > || w ||= vu - u = \/ul +ud + - + u2
¢ unit vector - vectors of norm 1

dot product » w - v = wv’ = 37 w;v;

= U1V1 + UV9 + -+ + U, U,

angle between v and v >

0 = cos™ ity

L PP o
o) = cos ( )

2fju[[v]]

inR™ : § = cos ™! (M tiats b tunty +uHZ‘HJ‘r1;|"'+" Yo )

cosine rule:

lw = vl* = [lull* + [lv]]* - 2[lul[|v] cos 0

basic properties

symmetric>u-v=v-u
distributivity > w - (u+v) =w-u+w-v
scalar multiplication - (cu) - v = u - (ev) = ¢(u - v)
* vectors are NOT associative - (u - v) - w # u - (v - w)
scalar multiplication for length = ||cul|| = |¢|||ul|
positive definite > u - u > 0
cu-u=0<+= u=0
cauchy-schwarz inequality - |u - v| < ||ul|||v||
triangle inequality = |Ju + v|| < ||lu|| + [jv]|

distance between vectors - d(u, w) < d(u,v) + d(v,w)

» orthogonal set - every pair of distinct vectors are orthogonal

e orthonormal set - orthogonal set; every vector is a unit vector

e (0 is orthogonal to every subspace and the whole R™

¢ a set containing only one (non-zero) vector is always an

orthogonal set

¢ orthogonal = linearly independent

¢ but linear independence = orthogonality

* e.g. standard basis E = {ey, s, . .

» 0 cannot be normalised = a set containing a zero vector

cannot be orthonormal

orthogonal/orthonormal bases

 to show that S is an orthogonal/orthonormal basis for V:

orthogonal bases

Let S = {uy,us, ..., u,} be an orthogonal basis for V.

w - Uy W - Ug w - U
w = uy + Ug + -+ + U,

Up - UL U9 * U U * Uk

w- U W U w - U
(’LU)S = ) RN}
Up - U UL UL Uk - Uk
orthonormal bases
Let S = {u1,us,...,u,} be an orthonormal basis for V.

.y en } for R™

1. S'is orthogonal/orthonormal (= linear independence)

2. 18| = dim(V) or span(S) =V

Then for any w € V,

Then for any w € V,

w=(w-v)vy + (w-v2)vy + -+ + (w- vy )
(w)s = (w-v1, w-vy, ...

the solution space of a matrix is orthogonal to its row

space.

, W - Vg)
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projections

Let V be a subspace of R".

Every u e R" can be written uniquely as
u=n+p

where p is avectorin V

and n is a vector orthogonal to V.

The vector p is called the (orthogonal) projection of u
onto V.
u

A vector u € R" is orthogonal to V' is u is orthogonal to all vectors in

V.

orthogonal bases & projections

let V be a subspace for R” and {ul, Uy vy uk} an orthogonal basis

for V.
for any w € R",
w - Uy w - Uy w - U
uy + U + -+ + U
Uy - U Uz - U2 Up - Up

is the projection of w onto V.

orthonormal bases & projections

let V' be a subspace for R™ and {v1,vs, ..., v} an orthonormal
basis for V.

for any w € R",

(w-uy)ug + (w-ug)ug + -+ - + (w - ug)ug
is the projection of w onto V.

Gram-Schmidt Process

Let {u,, u,, ..., u, } be a basis for a vector space V.

Let v, =u,,

- u; vy
Vo= Uy =y Vi

— us vy us vy
Vs= U3 = 3oy Vi v Va

Ui vy Uy v Uy Vi1

V= U, — v Vi v Ve T , -1-
k= U™ vy, V1 7 vy, V2 Vi-1" Vi1 K1

Then { vy, v,, ..., v} is an orthogonal basis for V.
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best approximations
avector u € R is a least squares solution to the linear system Az = b
<= p = Auis the best approximation of b onto the column space of A

<= p = Auis the projection of b onto the column space of A.

%

p=AU|—j |

w=Av K
V={Av|veR}

p is the best approximation of win V.
d(u,p) < d(u,v) forallveV
|b—Au||<||b—Av| forallveR"

least squares solution
« uis the least squares solution to the system Az = b

<= b= Auis orthogonal to a1, as,...,a, (A =
[a1 ag ... ay))

< wuisasolutionto AT Az = ATh

finding least squares solution

* using projection: x is a least squares solution <= Az = p,
where p is the projection of b on the column space of A (using
Gram-Schmidt)

« without projection: use AT Az = ATb

 find projection of a vector onto a span using least squares
solution:

« let the span be the column space of matrix A. let the vector
be b.

« let u be the solution to the linear system AT Az = ATb

e projection = Au (u is any least squares solution)

orthogonal matrices

« orthogonal > A~1 = AT (a square matrix)

transition matrices

let S and T" form two orthonormal bases for a vector space;

let P be the transition matrix from S to T
e P s an orthogonal matrix.

e PT = P~1 — transition matrix from T to S.

@ jovyntls

rotation of xy-coordinates

let E = {e1,e2} and S = {uq, us} where e, es, u, ug are
unit vectors along the z, y, ', 3y’ axes

e u; = (cosf,sinf) = e; cosb + ey sinf
e uy = (—sinf,cosf) = —e; sinh + ey cos

e transition matrix from S to F,

cosf —sinf
P:[sim? cos@}

o PT = transition matrix from E to S

conversion from zy to 'y
Let v = (z,y) € R?, (v)s = (z',%).

m  ols — PT[o]s — {cos@ sine] m

y —sinf cosf| |y
z' = xcosf + ysinb
y = —xsinf +ycosb

equivalent statements
1. Ais orthogonal
2. the rows of A form an orthonormal basis for R™

3. the columns of A form an orthonormal basis for R™
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eigenvalues & eigenvectors

let A be a square matrix of order 7.

e eigenvector - a nonzero column vector u € R™ such that
Au = Au for a scalar A (eigenvalue)

» wis an eigenvector of A associated with A
+ Au € span{u}

« for eigenvectors u,v,w, [u v w] 1A[u v w]=
[Au A Aw]

e triangular matrix - eigenvalues are the diagonal entries
¢ row operations DO NOT preserve eigenvalues

* transpose preserves eigenvalues!!

characteristic polynomials

e \isan eigenvalue for A

<— JueR"\{0} | (A\—A)u=0
<~ det(A\I-A)=0

« characteristic equation of A - det(Al — A) =0
« characteristic polynomial of A - det(AI — A)

¢ eigenvalue <= itis aroot of the polynomial

every odd degree polynomial has at least one real root

eigenspaces

« E, or E,(A) - eigenspace of A associated with the
eigenvalue A

« eigenspace - all eigenvectors of A associated with A
« all vectors u such that Au = Au
« solution space of the linear system (Al — A)z =0
* always a subspace of R"

« if wis a nonzero vector in E), u is an eigenvector of A
associated with A

diagonalization

« diagonalizable - there exists an invertible matrix P such that
P~1 AP is a diagonal matrix.

o P diagonalizes A.

e m X n square matrix A is diagonalisable <= A hasn
linearly independent eigenvectors

diagonalizing a matrix

Let A be a square matrix of order n.

Step 1: Find all distinct eigenvalues A, A, ..., A, (say,
by solving the characteristic equation det(AI- A)=0).

Step 2: For each eigenvalue 4, find a basis S, for the
eigenspace E,.
Step 3: Let S=5, US, U US,.
(a) If |S| <n, then A is not diagonalizable.
(b) If |S|=n, say, S={u,, u, .., u,},
then A is diagonalizable
and P= [ u, u, - up ] is an invertible matrix
that diagonalizes A.
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power of matrices
suppose A is invertible (i.e. \; Vi 0 for all 7). Then
NP oo 0
0 ! 0
Al=p ) | Pt
Lo o0 )
Foranym € ZT,
A" 0 o 0
0 )\2—”1 ces 0
A™m=P p

Lo 0 ]

orthogonal diagonalization

* orthogonally diagonalizable - there exists an orthogonal matrix
Psuchthat PPAP =D (Disa diagonal matrix)

« orthogonally diagonalizable <= symmetric (AT = A)
» P orthogonally diagonalizes A.

¢ uses orthonormal bases for diagonalisation

how to orthogonally diagonalize

Let A be a symmetric matrix of order n.

Step 1: Find all distinct eigenvalues Aq, A,, ..., A, (by
solving the characteristic equation det(AI— A) = 0).
Step 2: Find each eigenvalue A,
(a) find a basis S,, for the eigenspace E,, and then
(b) use the Gram-Schmidt Process (Theorem 5.2.19) to
transform SA, to an orthonormal basis T;.
Step3: Let T=T, UT, U UT,,
say, T={vy, Vo ..., V,}
Then P= [ Vi Vy v, J is an orthogonal matrix
that orthogonally diagonalizes A.



equivalent statements

let A be a square matrix. the following statements are equivalent:
1.
2.

© 00 N O o b W

Ais invertible

the linear system Az = 0 has only the trivial solution

. RREF of A is the identity matrix

. A can be expressed as a product of elementary matrices
. det(4) =0

. The rows of A form a basis for R™.

. The columns of A form a basis for R".

.rank(4) =n

. 0is not an eigenvalue of A.

checking if a matrix is diagonalizable

suppose the characteristic polynomial of A is factorised as

det(AIT —A) = (A= A)" (A=) - (A= Ap)™
where A1, ..., A\F are distinct eigenvalues of A.
A is diagonalizable
< dim(E),) =7; for each eigenvalue );
<~ ‘ S)\i =T

* T t+rot+--+rE=m

¢ if any one of the eigenspaces has dimensions less than 7;,
then the matrix is not diagonalizable

« If A has n distinct eigenvalues, then A is diagonalisable.

® jovyntls
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linear tranformations from R" — R
« linear transformation - a mapping : R” — R™ of the form

e if n = m, then T is a linear operator on R"

Z1 a1 Q2 Qin 1
T2 a1 Q2 - QA2 T2
T =
Tn | Gml Am2  *°° Amp 4
a11T1 Q122 -t AipTy
211 G22%2 - ApTp
_amlwl Am2T2 amnan

for (z1,xs,...,2,)T € R"

e the matrix (@;j)mxn is the standard matrix for T".

¢ linear transformation = multiplication by the standard matrix

alternative definition

(respects linear combinations)

let Vand W be vector spaces.

amapping T : V' — W is a linear transformation <—-
T(cu+ dv) = cT'(u) +dT(v) Vu,v € Vande,d € R

common mappings
« identity mapping, I : R®™ — R"
o standard matrix for I is the identity matrix I,,
o T is alinear operator on R"
e zero mapping, O : R — R™

« standard matrix for O is the zero matrix 0,, .,

basic properties

let T : R™ — R™ be a linear transformation.

. T(0) =0

o ifuy,ug,...,ur € R"andcy,co,...,c € R, then
T(ciug + coug + - -+ + cpug) = 1T (uy) + 2T (u2) +
w4 e T (ug)

standard matrices
forT : R® — R™,

» standard matrix, A > [T'(e;) T(ez)
o)
a2]'
T(e;) = Ae; = | .| = the " column of A

o)

¢ image of basis vectors of the standard basis

T(en)]

bases for R™

let {uy,us,...,u,} be a basis for R".
for any vector v € R, v = cju; + coug + - - - + cpuy,
for some ¢y,...,c, € R"

o {uy,us,...,u,} are the basis vectors

e the image T(v) of v is completely determined by the images
T(uy), T (u2),- .., T (uy) of the basis vectors

compositions of mappings

« composition of T with S - a mapping from R™ to R* defined
by (T o S)(u) = T(S(u)) foru € R”

e forallu € R*, (T o S)(u) =T(S(u)) =T(Au) = BAu
e BA s the standard matrix of T' 0 S

T(S(u))
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range

« range of T, R(T') - the set of images of T'

s R(T)={T(u) |ue R"} CR™

« R(T) = span{T(u), T(us), .. T(uun)}

+ R(T') = the column space of the standard matrix A
« rank of T' = the dimension of R(T")

 rank(T) = dim(R(T')) = dim(column space of A) =
rank(A)

kernel

« kernel of T, ker(T') - the set of vectors in R" whose image is
the zero vector in R™

e ker(T)={u|T(u) =0} CR"

+ ker(T') = the nullspace of the standard matrix A
« the nullity of T is the dimension of ker(T").

+ nullity(T") = dim(ker(T)) = nullity(A)

dimension theorem for linear transformation

rank(7T") + nullity(T') = n
= rank(A) + nullity(A)
= number of columns in A



