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Vector Magnitude:

• 2D Vector: ∥v∥ =
√

v21 + v22
• 3D Vector: ∥v∥ =

√
v21 + v22 + v23

Dot Product (for 2D vectors): u · v = u1v1 + u2v2.

Dot Product (for 3D vectors): u · v = u1v1 + u2v2 + u3v3.

or Cross Product (Simplified): u× v =

u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v1

 .

Cross Product (for 3D vectors): u× v = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1).

Angle Between Two Vectors:

cos θ =
u · v

∥u∥∥v∥
=⇒ θ = cos−1

(
u · v

∥u∥∥v∥

)

Alternate (Inverse Tangent) Method:

θ = tan−1
(y
x

)
for a vector (x, y)

2D Rotation Matrix:

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]



Scaling Matrix (2D):

S =

[
sx 0
0 sy

]

Shear Matrices (2D):

H =

[
1 k
0 1

]
or H ′ =

[
1 0
k 1

]

Projection Matrix (onto x-axis):

P =

[
1 0
0 0

]

Translation via Homogeneous Coordinates:

T =

1 0 tx
0 1 ty
0 0 1



Other Concepts:

• Inverse Vector: For a vector v, its inverse is −v such that v + (−v) = 0.
• Odd Function: A function f(x) is odd if f(−x) = −f(x) for all x.
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CM1015 Computational Mathematics - Vectors and
Linear Transformations

1 Introduction
This document covers fundamental aspects of algebra, vectors, matrices, and linear trans-
formations. Topics include definitions and properties of vector spaces, vector operations
(including dot product, cross product, and magnitude), and their representation via matri-
ces. In addition, we discuss how matrices capture geometric transformations such as rota-
tions, scaling, shear, and projections. Homogeneous coordinates are introduced for handling
translations, and we briefly review Gaussian elimination for solving linear systems.

2 Vectors and Vector Spaces
2.1 Definition of a Vector Space
A vector space V over a field (typically R or C) is a set equipped with two operations:

• Vector Addition: For any u,v ∈ V , the sum u+ v is in V .
• Scalar Multiplication: For any scalar a and vector v ∈ V , the product av is in V .

These operations satisfy the following properties:

1. Commutativity: u+ v = v + u.

2. Associativity: (u+ v) +w = u+ (v +w).

3. Identity Element: There exists a zero vector 0 such that v + 0 = v.

4. Inverse Element: For every v there exists an inverse vector −v such that v+(−v) =
0.

5. Distributivity (Scalar over Vector Addition):

a(u+ v) = au+ av.

6. Distributivity (Scalar Addition):

(a+ b)v = av + bv.
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2.2 Examples and Illustrations
Example 1: Let u = (u1, u2) and v = (v1, v2) be two vectors in R2. Their addition is
defined by:

u+ v = (u1 + v1, u2 + v2).

Illustration: The TikZ diagram below graphically represents vector addition.

u

v
u+ v

Figure 1: Vector Addition Diagram

2.3 Magnitude and Polar Coordinates
The magnitude (or Euclidean norm) of a vector is a measure of its length.

• For a 2D vector v = (v1, v2):
∥v∥ =

√
v21 + v22.

• For a 3D vector v = (v1, v2, v3):

∥v∥ =
√

v21 + v22 + v23.

In polar coordinates, a 2D point is described by a radius r and an angle θ. For a vector
v = (x, y):

r = ∥v∥, θ = arctan
(y
x

)
.

Alternatively, the angle θ between two vectors u and v can be computed by:

θ = cos−1

(
u · v

∥u∥∥v∥

)
.

Both methods (inverse tangent and inverse cosine) are useful depending on the information
available.

Magnitude Examples:

• For a 2D vector a = (3, 4):
∥a∥ =

√
32 + 42 = 5.

• For a 3D vector b = (2,−1, 2):

∥b∥ =
√

22 + (−1)2 + 22 =
√
4 + 1 + 4 =

√
9 = 3.
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Odd Functions: A function f(x) is odd if it satisfies:

f(−x) = −f(x) for all x.

For example, f(x) = x3 is odd since (−x)3 = −x3.
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3 Operations with Vectors
3.1 Dot Product (Scalar Product)
The dot product of two vectors u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) is defined as:

u · v = u1v1 + u2v2 + · · ·+ unvn.

Example: For u = (1, 3) and v = (4,−2),

u · v = 1 · 4 + 3 · (−2) = 4− 6 = −2.

3.2 Cross Product
The cross product is defined for vectors in R3. For u = (u1, u2, u3) and v = (v1, v2, v3):

u× v =
(
u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1

)
.

Example: If u = (1, 0, 0) and v = (0, 1, 0), then:

u× v = (0 · 0− 0 · 1, 0 · 0− 1 · 0, 1 · 1− 0 · 0) = (0, 0, 1).

4



4 Matrices and Linear Transformations
4.1 Linear Transformations and Their Matrix Representations
A linear transformation T : Rn → Rm satisfies:

T (u+ v) = T (u) + T (v) and T (av) = a T (v).

Any linear transformation can be represented by a matrix A such that:

T (x) = Ax.

Example: A rotation in R2 by an angle θ is represented by:

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
.

4.2 Geometric Transformations
Matrices can represent various geometric transformations:

• Scaling:
S =

[
sx 0
0 sy

]
.

• Rotation: (as shown above)
• Shear:

H =

[
1 k
0 1

]
or H ′ =

[
1 0
k 1

]
.

• Projection: For projecting onto the x-axis:

P =

[
1 0
0 0

]
.

4.3 Translations and Homogeneous Coordinates
Translations are not linear in standard Cartesian coordinates. To handle translations using
matrices, we use homogeneous coordinates. For a 2D point (x, y), we augment it to
(x, y, 1) and a translation by (tx, ty) is given by:

T =

1 0 tx
0 1 ty
0 0 1

 .

Thus, the translated point is: x′

y′

1

 = T

xy
1

 .
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4.4 Composition of Transformations
The composition of two linear transformations corresponds to the multiplication of their
matrices. If

T1(x) = A1x and T2(x) = A2x,

then the composite transformation T2 ◦ T1 is given by:

T2(T1(x)) = A2(A1x) = (A2A1)x.

Example: Rotate a vector by θ and then scale it by factors sx and sy. The combined
transformation matrix is:

A = S ·R(θ) =

[
sx 0
0 sy

] [
cos θ − sin θ
sin θ cos θ

]
.
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5 Systems of Linear Equations and Gaussian Elimina-
tion

5.1 Gaussian Elimination
Gaussian elimination is a systematic method for solving systems of linear equations. Consider
the system:

x+ 2y − z = 3,

2x− y + 3z = 4,

−x+ 4y + 2z = 5.

The method involves:

1. Writing the augmented matrix for the system.

2. Applying row operations to reduce the matrix to row-echelon form.

3. Back-substituting to obtain the solution.

5.2 Homogeneous Equations
A homogeneous system is one of the form:

Ax = 0.

The trivial solution is always x = 0. Non-trivial solutions exist if the determinant of A is
zero, indicating the presence of free parameters.
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6 Examples and Illustrations
6.1 Vector Addition Diagram (Working Version)
Below is a TikZ illustration for vector addition:

u

v
u+ v

6.2 Rotation Transformation Diagram
Below is an example TikZ diagram illustrating the rotation of a vector:

x

R(θ)x

θ

6.3 Magnitude, Dot Product, and Cross Product Examples
Magnitude Examples:

• For a 2D vector a = (3, 4):
∥a∥ =

√
32 + 42 = 5.

• For a 3D vector b = (2,−1, 2):

∥b∥ =
√

22 + (−1)2 + 22 =
√
4 + 1 + 4 = 3.

Dot Product Example:
Let u = (1, 0) and v = (1, 1). Then,

u · v = 1 · 1 + 0 · 1 = 1.

Computing the magnitudes:

∥u∥ =
√
12 + 02 = 1, ∥v∥ =

√
12 + 12 =

√
2.

Using the inverse cosine method, the angle between u and v is:

θ = cos−1

(
1

1 ·
√
2

)
= cos−1

(
1√
2

)
≈ 45◦.
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Alternatively, using the inverse tangent method for v = (1, 1):

θ = tan−1

(
1

1

)
= tan−1(1) ≈ 45◦.

Cross Product Example:
For u = (1, 0, 0) and v = (0, 1, 0),

u× v =
(
0 · 0− 0 · 1, 0 · 0− 1 · 0, 1 · 1− 0 · 0

)
= (0, 0, 1).
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