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Vector Spaces

A vector space (or linear space) is a collection of objects called vectors,
which can be added together and multiplied (scaled) by numbers, called scalars.
Scalars are often real numbers (R) but can also come from other fields like
complex numbers (C).

Formally, a vector space V over a field F (usually R or C) satisfies the
following properties: - **Closure under addition**: For any vectors u, v ∈ V ,
u+ v ∈ V . - **Closure under scalar multiplication**: For any scalar c ∈ F and
any vector v ∈ V , cv ∈ V . - **Zero vector**: There exists a zero vector 0 ∈ V
such that for any vector v ∈ V , v + 0 = v. - **Additive inverses**: For each
v ∈ V , there is a vector −v ∈ V such that v + (−v) = 0. - **Distributive and
associative properties** for vector addition and scalar multiplication.

Example 1: R2

The set of all 2-dimensional vectors with real components, R2, is an example of
a vector space:

R2 =

{(
x
y

)
: x, y ∈ R

}
.

Vectors can be added, and they can be multiplied by scalars from R.(
1
2

)
+

(
3
4

)
=

(
4
6

)
, 2 ·

(
1
2

)
=

(
2
4

)
.

Subspaces

A subspace of a vector space V is a subset W ⊆ V that is itself a vector space
under the same operations of vector addition and scalar multiplication.

For W to be a subspace, it must satisfy: 1. The zero vector of V is in W . 2.
W is closed under vector addition. 3. W is closed under scalar multiplication.
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Example 2: Subspace of R2

The set of all vectors on a line through the origin in R2 is a subspace. For
example, the line y = 2x forms the subspace

W =

{(
x
2x

)
: x ∈ R

}
.

This is a subspace because it contains the zero vector

(
0
0

)
, and it is closed

under both addition and scalar multiplication.

Basis

A basis of a vector space V is a set of vectors in V that are linearly independent
and span the entire vector space. This means every vector in V can be written
as a linear combination of the basis vectors.

If B = {v1, v2, . . . , vn} is a basis for V , then for every vector v ∈ V , there
are unique scalars a1, a2, . . . , an such that:

v = a1v1 + a2v2 + · · ·+ anvn.

Example 3: Basis of R2

The standard basis for R2 is:

B =

{(
1
0

)
,

(
0
1

)}
.

Any vector in R2 can be expressed as a linear combination of these two vectors.
For example: (

3
5

)
= 3

(
1
0

)
+ 5

(
0
1

)
.

Dimension

The dimension of a vector space V is the number of vectors in any basis for
V . If a vector space V has a basis consisting of n vectors, we say that V is
n-dimensional, and we write:

dim(V ) = n.

Example 4: Dimension of R3

The standard basis for R3 consists of three vectors:

B =


1
0
0

 ,

0
1
0

 ,

0
0
1

 .
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Thus, the dimension of R3 is 3.

dim(R3) = 3.

Linear Independence

A set of vectors {v1, v2, . . . , vn} in a vector space V is called linearly indepen-
dent if the only solution to the equation:

a1v1 + a2v2 + · · ·+ anvn = 0

is a1 = a2 = · · · = an = 0. In other words, no vector in the set can be written
as a linear combination of the others.

Example 5: Linearly Independent Vectors in R2

The vectors

(
1
0

)
and

(
0
1

)
are linearly independent because the only solution

to:

a1

(
1
0

)
+ a2

(
0
1

)
=

(
0
0

)
is a1 = 0 and a2 = 0.

Diagram: Visualizing a Subspace in R2

x

y

y = 2x

(1, 2)

(−1,−2)

Figure 1: A subspace of R2 represented by the line y = 2x. This subspace

contains all scalar multiples of the vector

(
1
2

)
.
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