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1 About

This document is part of a series of notes about math and machine learning. You are free to
distribute it as you wish. The latest version can be found at http://gwthomas.github.io/notes.
Please report any errors to gwthomas@stanford.edu.

2 Vector spaces

Vector spaces are the basic setting in which linear algebra happens. A vector space over a field
F consists of a set V' (the elements of which are called vectors) along with an addition operation
4+ :V xV — V and a scalar multiplication operation F x V — V satisfying

(i) There exists an additive identity, denoted 0, in V such that v+ 0=wv forallv e V

(if) For each v € V, there exists an additive inverse, denoted —v, such that v 4+ (—v) =0

(iii) There exists a multiplicative identity, denoted 1, in F such that lv = v for all v € V

(iv) Commutativity: v +v =v +u for all u,v € V

(v) Associativity: (u+v) +w =u+ (v+w) and a(fv) = (af)v for all u,v,w € V and o, € F
(vi) Distributivity: a(u +v) = au+ av and (a+ 8)v = av + fov for all u,v € V and o, 8 € F

We will assume F = R or F = C as these are the most common cases by far, although in general it
could be any field.

To justify the notations 0 for the additive identity and —v for the additive inverse of v we must
demonstrate their uniqueness.

Proof. If w,w € V satisfy v +w = v and v + @ = v for all v € V, then
W=w4+w=w+w=w

This proves the uniqueness of the additive identity. Similarly, if w,w € V satisfy v + w = 0 and
v+ w = 0, then
w=w+0=wt+v+w=0+w=w

thus showing the uniqueness of the additive inverse. O
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We have Ov = 0 for every v € V and a0 = 0 for every a € F.

Proof. If v € V, then
v=1lw=(140v=1w+0v=0v+00v

which implies Ov = 0. If « € TF, then
av=a(v+0)=av+al
which implies a0 = 0. O
Moreover, (—1)v = —v for every v € V, since
v+ (—Dv=(1+(-1)v=00=0

and we have shown that additive inverses are unique.

2.1 Subspaces

Vector spaces can contain other vector spaces. If V is a vector space, then S C V is said to be a
subspace of V if

(i) 0e s
(ii) S is closed under addition: u,v € S implies u +v € S

(iii) S is closed under scalar multiplication: v € S, a € F implies av € S

Note that V is always a subspace of V', as is the trivial vector space which contains only 0.

Proposition 1. Suppose U and W are subspaces of some vector space. Then U NW is a subspace
of U and a subspace of W.

Proof. We only show that U N W is a subspace of U; the same result follows for W since UNW =
wnuU.

(i) Since 0 € U and 0 € W by virtue of their being subspaces, we have 0 € U N W.
(ii) fz,ye UNW, thenz,y € Usoxz+y € U,and z,y € Wsox+y € W; hence x+y € UNW.

(iii) fv e UNW and o € F, then v € U so av € U, and v € W so aw € W; hence av € UNW.

Thus U N W is a subspace of U. O

2.1.1 Sums of subspaces

If U and W are subspaces of V', then their sum is defined as
U+WEa{ut+w:uecUweW}

Proposition 2. Let U and W be subspaces of V.. Then U + W 1is a subspace of V.

Proof. (i) Since0 €U and 0€V,0=0+0€ U+ W.



(ii) If v1,v9 € U + W, then there exist ui,us € U and wy,ws € W such that v; = u; + w; and
V9 = Uz + wa, so by the closure of U and W under addition we have

V] +vy=ul +w) +usFwe=u; +us+w +we €cU+W
—_——— N —

€U ew

(iii) If v € U+ W, € F, then there exists u € U and w € W such that v = u+w, so by the closure
of U and W under scalar multiplication we have

av=alu+w)= _au +aw eU+W
€U ew

Thus U + W is a subspace of V. O

If U nW = {0}, the sum is said to be a direct sum and written U & W.

Proposition 3. Suppose U and W are subspaces of some vector space. The following are equivalent:

(i) The sum U+ W is direct, i.e. UNW = {0}.
(i) The only way to write 0 as a sum u + w where u € U,w € W is to take u = w = 0.

(i1i) Every vector in U + W can be written uniquely as v+ w for some uw € U and w € W.

Proof. (i) = (ii): Assume (i), and suppose 0 = u + w where u € U,w € W. Then u = —w, so
u € W as well, and thus u € U N W. By assumption this implies © = 0, so w = 0 also.

(ii) = (iil): Assume (ii), and suppose v € U + W can be written both as v = u+w and v = 4+ w
where u,u € U and w,w € W. Then

O=v—v=utw—(I+0)=u—a4+w—w
eu ew

so by assumption we must have u —t =w —w =0, i.e. u =1 and w = w.

(iii) = (i): Assume (iii), and suppose v € UNW, so that v € U and v € W, nothing that —v € W
also. Now 0 = v + (—v) and 0 = 0 4 0 both write 0 in the form u + w where v € U,w € W, so by
the assumed uniqueness of this decomposition we conclude that v = 0. Thus UNW C {0}. It is

also clear that {0} C UNW since U and W are both subspaces, so U N W = {0}. O
2.2 Span
A linear combination of vectors vy,...,v, € V is an expression of the form

a1V + -+ U

where a1,...,a, € F. The span of a set of vectors is the set of all possible linear combinations of
these:
span{vy,...,v,} = {aqvy + -+ auu, taq, ..., € F}

We also define the special case span{} = {0}. Spans of sets of vectors form subspaces.

Proposition 4. Ifvy,...,v, € V, then span{vy,...,v,} is a subspace of V.



Proof. Let S = span{vy,...,v,}. If n =0, we have S = span{} = {0}, which is a subspace of V|, so
assume hereafter that n > 0.

(i) Since {vi,...,v,} is non-empty (as n > 1), we have 0 = Ovy + - -+ + Ov,, € S.

(ii) If xz,y € S, we can write * = v + -+ + Quv, and y = Siv; + - + Bpv, for some
Q1y.eeyQpyB1y..., Bn € F. Then

T4y =010+ +apvy + Proy + -+ Bruy = (a1 + Br)vr + -+ (o + Br)vn €S
(iii) If x € S, 8 € F, we can write x = ajv1 + - - - + v, for some a1, ..., a, € F. Then
B = B(arvy + -+ + anvy) = (Bag)vy + -+ + (Bay)v, €S
Thus S is a subspace of V. O

Adding a vector which lies in the span of a set of vectors to that set does not expand the span in
any way.

Proposition 5. If w € span{vy,...,v,}, then span{vy,...,v,, w} = span{vy,..., v, }.

Proof. Suppose w € span{vy,...,v,}. It is clear that span{vi,...,v,} C span{vi,...,v,, w}: if

u € span{vy, ..., v, } then it can be written u = v+ - -+, Uy, but then u = ayv1+- - -+ ap v, +0w,
so u € spanf{vy, ..., vy, w}.

To prove the other direction, write w = Biv1 + -+ + Bpvy,. Then for any u € spanf{vy,..., vy, w},
there exist aq, ..., ap,@yy1 such that v = vy + - -+ + vy, + @pp1w, and

U= 101 + -+ apUp + apy1(Bfror + -+ Buun)
= (a1 + ang1b1)v1 + - + (n + A1 5n)Un

so u € span{vy,..., v, }. Hence span{vy,...,v,,w} C span{vy,...,v,} and the claim follows. O

2.3 Linear independence

A set of vectors vy, ...,v, € V is said to be linearly independent if
vy + -+ apv, =0 implies a;=---=aq, =0.
Otherwise, there exist aq,...,a, € F, not all zero, such that ayvy + -+ + ayv, =0, and vy,...,v,

are said to be linearly dependent. Note that in the case of linear dependence, (at least) one vector
can be written as a linear combination of the other vectors in the set: if a; # 0, then
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This implies that v; € span{vi,...,vj_1,Vj41,...,Un}.



2.4 Basis

If a set of vectors is linearly independent and its span is the whole of V', those vectors are said
to be a basis for V. One of the most important properties of bases is that they provide unique
representations for every vector in the space they span.

Proposition 6. A set of vectors vy,...,v, € V is a basis for V if and only if every vector in V' can
be written uniquely as a linear combination of vi, ..., Vy,.
Proof. Suppose v, ..., v, is a basis for V. Then these span V', so if w € V then there exist aq, ..., ay,

such that w = ayv; + - - - + a,v,. Furthermore, if w = ajv1 + - -+ + v, also, then

0=w—w

a1V + -+ anvp = (G1v1 + - F Gnvn)

== (al - dl)vn + -+ (an - dn)vn

Since vy, ..., vy are linearly independent, this implies a; —&; =0, i.e. o = &;, forall j=1,...,n.
Conversely, suppose that every vector in V' can be written uniquely as a linear combination of
v1,...,V,. The existence part of this assumption clearly implies that v1,...,v, span V. To show
that vy, ...,v, are linearly independent, suppose

oa1v1 + -+ apv, =0

and observe that since
Ovi+---+0v,=0

the uniqueness of the representation of 0 as a linear combination of vq,...,v, implies that a; =
=y, = 0. O

If a vector space is spanned by a finite number of vectors, it is said to be finite-dimensional.
Otherwise it is infinite-dimensional. The number of vectors in a basis for a finite-dimensional
vector space V is called the dimension of V' and denoted dim V.

Proposition 7. Ifvy,...,v, € V are not all zero, then there exists a subset of {v1,...,v,} which
is linearly independent and whose span equals span{vy, ..., v, }.

Proof. If vy,...,v, are linearly independent, then we are done. Otherwise, pick v; which is in
span{vi,...,Uj—1,Vj41,...,Un}. Since span{vi,...,vj_1,vj41,...,Vn} = span{vy,...,v,}, we can
drop v; from this list without changing the span. Repeat this process until the resulting set is
linearly independent. O

As a corollary, we can establish an important fact: every finite-dimensional vector space has a basis.

Proof. Let V be a finite-dimensional vector space. By definition, this means that there exist
v1,...,0, such that V' = span{vi,...,v,}. By the previous result, there exists a linearly inde-
pendent subset of {vy,...,v,} whose span is V; this subset is a basis for V. O

Proposition 8. A linearly independent set of vectors in V' can be extended to a basis for V.

Proof. Suppose v1,...,v, € V are linearly independent. Let wi,...,w,, be a basis for V. Then
VlyennyUn, W1, ..., Wy spans V', so there exists a subset of this set which is linearly independent
and also spans V. Moreover, by inspecting the process by which this linearly independent subset



is produced, we see that none of vq,...,v, need be dropped because they are linearly independent.
Hence the resulting linearly independent set, which is basis for V', can be chosen to contain vy, ..., v,.
O

The dimensions of sums of subspaces obey a friendly relationship:

Proposition 9. If U and W are subspaces of some vector space, then
dim(U + W) =dimU + dim W — dim(U N W)

Proof. Let vy, ..., v, be a basis for UNW, and extend this to bases vy, ...,vg, U1, ..., Uy for U and
Vlyenny Uk, W1, ..., Wy, for W. We claim that vy, ..., vk, u1,. .., Un,w1,...,w, is a basis for U + W.

IfveU+W, then v = u+ w for some u € Uyw € W. Then since u = ajvi + -+ + apvp +

Q41U "+ + QU for some aq, ..., aym € Fand w = Bivr + -+ + Brvk + Bryrwr -+ - + BetnWn
for some fBi,..., Bk+n € F, we have
V=uU+w

=ov1 + o+ QU F QiU F Qg Um + S101 4 - F Bk + Brpiwr - 4 BignWn

= (a1 + Br)vi + - + (o + Br)vk + Qpg1us -+ + pgmUm + Bep1w1 -+ + BrynWn

SO v € span{vi, ..., Vg, UL, ..., Um, W1,..., W, }. Moreover, the uniqueness of the expansion of v in
this set follows from the uniqueness of the expansions of u and w.

Thus v1,...,Vk, U1, ..., Upm, W1, ..., W, iS a basis for U + W as claimed, so
dmU +dimW —dim(UNW) =(k+m)+ (k+n)—k=k+m+n=dmU + W)

as we set out to show. O

It follows immediately that
dim(Ue W) =dimU + dim W

since dim(U N W) = dim{0} = 0 if the sum is direct.

3 Linear maps

A linear map is a function T': V — W, where V and W are vector spaces over F, that satisfies

(1) T(w+v)=T(u)+T() for all u,v € V
(ii) T(aw) = aT(v) for allv e V,a € F
The standard notational convention for linear maps (which we will follow hereafter) is to drop

unnecessary parentheses, writing Tv rather than T'(v) if there is no risk of ambiguity, and denote
composition of linear maps by ST rather than the usual SoT.

The identity map on V', which sends each v € V' to v, is denoted Iy, or just I if the vector space V'
is clear from context. Note that all linear maps (not just the identity) send zero to zero.

Proof. For any v € V we have
Tv=Tw+0y)=Tv+T0y

so by subtracting Tv from both sides we obtain 70y = Oy . O



One useful fact regarding linear maps (both conceptually and for proofs) is that they are uniquely
determined by their action on a basis.

Proposition 10. Let vy,...,v, be a basis for a vector space V', and w1, ..., w, be arbitrary vectors
in a vector space W. Then there exists a unique linear map T : V. — W such that
TUj = Wj

forallj=1,... n.

Proof. Define
T:V->W

a1V + o apUy > 0wy o+ Wy
This function is well-defined because every vector in V' can be expressed uniquely as a linear com-
bination of vq,...,v,. Then for any x = ayvi + -+ ayuv, and y = Biv; + -+ + Buv, in V,
T(.’,E + y) = T(alvl + -+ apv, + Blvl + - +/ann)

=T((a1 + B1)vi + - + (an + Bn)vn)

= (a1 + Br)wr + -+ + (an + Bn)wy,

=oqwy + -+ anwp + frwr + -+ fawn

=Tx+Ty
and if v € F then

T(yz) = T(y(arv + -+ + anoy))
=T((var)vr + -+ (yan)vn)
= (yaq)wy + -+ + (yap)wy,
=v(aqwy + -+ + apwy)
=~Tx

so T' is a linear map. Now observe that, by construction,
T’Uj = T(O’Ul + e + OUj_l + 11}j + O’Uj_;'_l + e + Ovn)
= 0wy + -+ 0w;j—1 + lw; + Qw1 + -+ - + 0w,

as desired. Towards uniqueness, suppose 7' is a linear map which satisfies ij =wj;forj=1,...,n.
Any v € V can be written uniquely as v = a1v1 + - -+ + @, v,, and

T(a1v1+-~-—|—anvn)zalj’vl—k---—l—anfvn:alwl—|—---—|—anwn

by the linearity of T. Hence T = T. O

3.1 Isomorphisms

Observe that the definition of a linear map is suited to reflect the structure of vector spaces, since it
preserves vector spaces’ two main operations, addition and scalar multiplication. In algebraic terms,
a linear map is said to be a homomorphism of vector spaces. An invertible homomorphism where
the inverse is also a homomorphism is called an isomorphism. If there exists an isomorphism from
V to W, then V and W are said to be isomorphic, and we write V = W. Isomorphic vector
spaces are essentially “the same” in terms of their algebraic structure. It is an interesting fact that
finite-dimensional vector spaces of the same dimension over the same field are always isomorphic.



Proof. Let V and W be finite-dimensional vector spaces over F, with n £ dimV = dimW. We
will show that V' = W by exhibiting an isomorphism from V' to W. To this end, let vq,..., v, and
w1, ..., w, be bases for V and W, respectively. Then there exist (unique) linear maps T: V — W
and S : W — V satisfying Tv; = w; and Sw; = v; forall j =1,...,n. Now clearly STv; = Sw; = v;
for each j, so ST = Iy. Similarly, TSw; = Tv; = w; for each j, so T'S = Iyy. Hence S = T}, so
T is an isomorphism, and hence V = W. O

3.2 Algebra of linear maps

Linear maps can be added and scaled to produce new linear maps. That is, if S and T are lin-
ear maps from V into W, and a € F, it is straightforward to verify that S + T and o1 are
linear maps from V into W. Since addition and scaling of functions satisfy the usual commutativ-
ity /associativity /distributivity rules, the set of linear maps from V into W is also a vector space
over F; we denote this space by L(V,W). The additive identity here is the zero map which sends
every v € V to Oy .

The composition of linear maps is also a linear map.

Proposition 11. Let U, V, and W be vector spaces over a common field F, and suppose S : V — W
and T : U — V are linear maps. Then the composition ST : U — W is also a linear map.

Proof. For any u,v € U,
(ST (u+v)=ST(u+v))=STu+Tv)=STu+ STv
and furthermore if o € F then
(ST)(aw) = S(T(aw)) = S(aTv) = aSTv

so ST is linear. O

The identity map is a “multiplicative” identity here, as TIy = IyT =T for any T : V — W.

3.3 Nullspace

If T:V — W is a linear map, the nullspace’ of T is the set of all vectors in V that get mapped to
Z€ro:

null(T) £ {v eV :Tv=0pw}

Proposition 12. If T :V — W is a linear map, then null(T) is a subspace of V.

Proof. (i) We have already seen that T(0y) = Oy, so Oy € null(T).

(i) If u,v € null(T"), then
T(u+v)=Tu+Tv=0w + 0w = 0w

so u+ v € null(T).

1 It is sometimes called the kernel by algebraists, but we eschew this terminology because the word “kernel” has
another meaning in machine learning.



(iii) If v € null(T'), « € T, then
T(aw) = aTv = a0y = Ow

so av € null(T).
Thus null(7") is a subspace of V. O

Proposition 13. A linear map T : V. — W is injective if and only if null(T) = {0y }.

Proof. Assume T is injective. We have seen that 70y = Ow, so Oy € null(T'), and moreover if
Tv = Ow the injectivity of T implies v = Oy, so null(T") = {0y }.

Conversely, assume null(T") = {0y }, and suppose Tu = Tw for some u,v € V. Then
0=Tu—Tv=T(u—v)

so u — v € null(T"), which by assumption implies u — v = 0, i.e. u = v. Hence T is injective. O

3.4 Range

The range of T is (as for any function) the set of all possible outputs of T":
range(T) £ {Tv:v €V}

Proposition 14. If T : V — W is a linear map, then range(T) is a subspace of W.

Proof. (1) We have already seen that T'(0y) = Ow, so Oy € range(T).
(ii) If w, z € range(T'), there exist u,v € V such that w = Tw and z = Tv. Then
Tu+v)=Tu+Tv=w+z
so w+ z € range(T).
(iii) If w € range(T), o € F, there exists v € V such that w = Tv. Then
T(awv) = aTv = aw

so aw € range(T).

Thus range(T) is a subspace of W. O

4 Eigenvalues and eigenvectors

In the special case where the domain and codomain of a linear map are the same, certain vectors
may have the special property that the map simply scales them. If T: V' — V is a linear map and
v € V is nonzero, then v is said to be an eigenvector of 7" with corresponding eigenvalue A € F if

Tv=Mv

or equivalently, if
v € null(T — AI)

This second definition makes it clear that the set of eigenvectors corresponding to a given eigenvalue
(along with 0) is a vector space. This vector space is called the eigenspace of T' associated with .
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