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1 About

This document is part of a series of notes about math and machine learning. You are free to
distribute it as you wish. The latest version can be found at http://gwthomas.github.io/notes.
Please report any errors to gwthomas@stanford.edu.

2 Vector spaces

Vector spaces are the basic setting in which linear algebra happens. A vector space over a field
F consists of a set V (the elements of which are called vectors) along with an addition operation
+ : V × V → V and a scalar multiplication operation F× V → V satisfying

(i) There exists an additive identity, denoted 0, in V such that v + 0 = v for all v ∈ V

(ii) For each v ∈ V , there exists an additive inverse, denoted −v, such that v + (−v) = 0

(iii) There exists a multiplicative identity, denoted 1, in F such that 1v = v for all v ∈ V

(iv) Commutativity: u+ v = v + u for all u, v ∈ V

(v) Associativity: (u+ v) + w = u+ (v + w) and α(βv) = (αβ)v for all u, v, w ∈ V and α, β ∈ F

(vi) Distributivity: α(u+ v) = αu+ αv and (α+ β)v = αv + βv for all u, v ∈ V and α, β ∈ F

We will assume F = R or F = C as these are the most common cases by far, although in general it
could be any field.

To justify the notations 0 for the additive identity and −v for the additive inverse of v we must
demonstrate their uniqueness.

Proof. If w, w̃ ∈ V satisfy v + w = v and v + w̃ = v for all v ∈ V , then

w = w + w̃ = w̃ + w = w̃

This proves the uniqueness of the additive identity. Similarly, if w, w̃ ∈ V satisfy v + w = 0 and
v + w̃ = 0, then

w = w + 0 = w + v + w̃ = 0 + w̃ = w̃

thus showing the uniqueness of the additive inverse.
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We have 0v = 0 for every v ∈ V and α0 = 0 for every α ∈ F.

Proof. If v ∈ V , then
v = 1v = (1 + 0)v = 1v + 0v = v + 0v

which implies 0v = 0. If α ∈ F, then

αv = α(v + 0) = αv + α0

which implies α0 = 0.

Moreover, (−1)v = −v for every v ∈ V , since

v + (−1)v = (1 + (−1))v = 0v = 0

and we have shown that additive inverses are unique.

2.1 Subspaces

Vector spaces can contain other vector spaces. If V is a vector space, then S ⊆ V is said to be a
subspace of V if

(i) 0 ∈ S

(ii) S is closed under addition: u, v ∈ S implies u+ v ∈ S

(iii) S is closed under scalar multiplication: v ∈ S, α ∈ F implies αv ∈ S

Note that V is always a subspace of V , as is the trivial vector space which contains only 0.

Proposition 1. Suppose U and W are subspaces of some vector space. Then U ∩W is a subspace
of U and a subspace of W .

Proof. We only show that U ∩W is a subspace of U ; the same result follows for W since U ∩W =
W ∩ U .

(i) Since 0 ∈ U and 0 ∈W by virtue of their being subspaces, we have 0 ∈ U ∩W .

(ii) If x, y ∈ U ∩W , then x, y ∈ U so x+ y ∈ U , and x, y ∈W so x+ y ∈W ; hence x+ y ∈ U ∩W .

(iii) If v ∈ U ∩W and α ∈ F, then v ∈ U so αv ∈ U , and v ∈W so αv ∈W ; hence αv ∈ U ∩W .

Thus U ∩W is a subspace of U .

2.1.1 Sums of subspaces

If U and W are subspaces of V , then their sum is defined as

U +W , {u+ w : u ∈ U,w ∈W}

Proposition 2. Let U and W be subspaces of V . Then U +W is a subspace of V .

Proof. (i) Since 0 ∈ U and 0 ∈ V , 0 = 0 + 0 ∈ U +W .
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(ii) If v1, v2 ∈ U + W , then there exist u1, u2 ∈ U and w1, w2 ∈ W such that v1 = u1 + w1 and
v2 = u2 + w2, so by the closure of U and W under addition we have

v1 + v2 = u1 + w1 + u2 + w2 = u1 + u2︸ ︷︷ ︸
∈U

+w1 + w2︸ ︷︷ ︸
∈W

∈ U +W

(iii) If v ∈ U +W,α ∈ F , then there exists u ∈ U and w ∈W such that v = u+w, so by the closure
of U and W under scalar multiplication we have

αv = α(u+ w) = αu︸︷︷︸
∈U

+ αw︸︷︷︸
∈W

∈ U +W

Thus U +W is a subspace of V .

If U ∩W = {0}, the sum is said to be a direct sum and written U ⊕W .

Proposition 3. Suppose U and W are subspaces of some vector space. The following are equivalent:

(i) The sum U +W is direct, i.e. U ∩W = {0}.

(ii) The only way to write 0 as a sum u+ w where u ∈ U,w ∈W is to take u = w = 0.

(iii) Every vector in U +W can be written uniquely as u+ w for some u ∈ U and w ∈W .

Proof. (i) =⇒ (ii): Assume (i), and suppose 0 = u + w where u ∈ U,w ∈ W . Then u = −w, so
u ∈W as well, and thus u ∈ U ∩W . By assumption this implies u = 0, so w = 0 also.

(ii) =⇒ (iii): Assume (ii), and suppose v ∈ U +W can be written both as v = u+w and v = ũ+ w̃
where u, ũ ∈ U and w, w̃ ∈W . Then

0 = v − v = u+ w − (ũ+ w̃) = u− ũ︸ ︷︷ ︸
∈U

+w − w̃︸ ︷︷ ︸
∈W

so by assumption we must have u− ũ = w − w̃ = 0, i.e. u = ũ and w = w̃.

(iii) =⇒ (i): Assume (iii), and suppose v ∈ U ∩W , so that v ∈ U and v ∈W , nothing that −v ∈W
also. Now 0 = v + (−v) and 0 = 0 + 0 both write 0 in the form u + w where u ∈ U,w ∈ W , so by
the assumed uniqueness of this decomposition we conclude that v = 0. Thus U ∩W ⊆ {0}. It is
also clear that {0} ⊆ U ∩W since U and W are both subspaces, so U ∩W = {0}.

2.2 Span

A linear combination of vectors v1, . . . , vn ∈ V is an expression of the form

α1v1 + · · ·+ αnvn

where α1, . . . , αn ∈ F. The span of a set of vectors is the set of all possible linear combinations of
these:

span{v1, . . . , vn} , {α1v1 + · · ·+ αnvn : α1, . . . , αn ∈ F}

We also define the special case span{} = {0}. Spans of sets of vectors form subspaces.

Proposition 4. If v1, . . . , vn ∈ V , then span{v1, . . . , vn} is a subspace of V .
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Proof. Let S = span{v1, . . . , vn}. If n = 0, we have S = span{} = {0}, which is a subspace of V , so
assume hereafter that n > 0.

(i) Since {v1, . . . , vn} is non-empty (as n ≥ 1), we have 0 = 0v1 + · · ·+ 0vn ∈ S.

(ii) If x, y ∈ S, we can write x = α1v1 + · · · + αnvn and y = β1v1 + · · · + βnvn for some
α1, . . . , αn, β1, . . . , βn ∈ F. Then

x+ y = α1v1 + · · ·+ αnvn + β1v1 + · · ·+ βnvn = (α1 + β1)v1 + · · ·+ (αn + βn)vn ∈ S

(iii) If x ∈ S, β ∈ F, we can write x = α1v1 + · · ·+ αnvn for some α1, . . . , αn ∈ F. Then

βx = β(α1v1 + · · ·+ αnvn) = (βα1)v1 + · · ·+ (βαn)vn ∈ S

Thus S is a subspace of V .

Adding a vector which lies in the span of a set of vectors to that set does not expand the span in
any way.

Proposition 5. If w ∈ span{v1, . . . , vn}, then span{v1, . . . , vn, w} = span{v1, . . . , vn}.

Proof. Suppose w ∈ span{v1, . . . , vn}. It is clear that span{v1, . . . , vn} ⊆ span{v1, . . . , vn, w}: if
u ∈ span{v1, . . . , vn} then it can be written u = α1v1+· · ·+αnvn, but then u = α1v1+· · ·+αnvn+0w,
so u ∈ span{v1, . . . , vn, w}.
To prove the other direction, write w = β1v1 + · · · + βnvn. Then for any u ∈ span{v1, . . . , vm, w},
there exist α1, . . . , αn, αn+1 such that u = α1v1 + · · ·+ αnvn + αn+1w, and

u = α1v1 + · · ·+ αnvn + αn+1(β1v1 + · · ·+ βnvn)

= (α1 + αn+1β1)v1 + · · ·+ (αn + αn+1βn)vn

so u ∈ span{v1, . . . , vm}. Hence span{v1, . . . , vn, w} ⊆ span{v1, . . . , vn} and the claim follows.

2.3 Linear independence

A set of vectors v1, . . . , vn ∈ V is said to be linearly independent if

α1v1 + · · ·+ αnvn = 0 implies α1 = · · · = αn = 0.

Otherwise, there exist α1, . . . , αn ∈ F, not all zero, such that α1v1 + · · ·+ αnvn = 0, and v1, . . . , vn
are said to be linearly dependent. Note that in the case of linear dependence, (at least) one vector
can be written as a linear combination of the other vectors in the set: if αj 6= 0, then

vj = − 1

αj

n∑
k 6=j

αkvk

This implies that vj ∈ span{v1, . . . , vj−1, vj+1, . . . , vn}.
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2.4 Basis

If a set of vectors is linearly independent and its span is the whole of V , those vectors are said
to be a basis for V . One of the most important properties of bases is that they provide unique
representations for every vector in the space they span.

Proposition 6. A set of vectors v1, . . . , vn ∈ V is a basis for V if and only if every vector in V can
be written uniquely as a linear combination of v1, . . . , vn.

Proof. Suppose v1, . . . , vn is a basis for V . Then these span V , so if w ∈ V then there exist α1, . . . , αn

such that w = α1v1 + · · ·+ αnvn. Furthermore, if w = α̃1v1 + · · ·+ α̃nvn also, then

0 = w − w
= α1v1 + · · ·+ αnvn − (α̃1v1 + · · ·+ α̃nvn)

= (α1 − α̃1)vn + · · ·+ (αn − α̃n)vn

Since v1, . . . , vn are linearly independent, this implies αj − α̃j = 0, i.e. αj = α̃j , for all j = 1, . . . , n.

Conversely, suppose that every vector in V can be written uniquely as a linear combination of
v1, . . . , vn. The existence part of this assumption clearly implies that v1, . . . , vn span V . To show
that v1, . . . , vn are linearly independent, suppose

α1v1 + · · ·+ αnvn = 0

and observe that since
0v1 + · · ·+ 0vn = 0

the uniqueness of the representation of 0 as a linear combination of v1, . . . , vn implies that α1 =
· · · = αn = 0.

If a vector space is spanned by a finite number of vectors, it is said to be finite-dimensional.
Otherwise it is infinite-dimensional. The number of vectors in a basis for a finite-dimensional
vector space V is called the dimension of V and denoted dimV .

Proposition 7. If v1, . . . , vn ∈ V are not all zero, then there exists a subset of {v1, . . . , vn} which
is linearly independent and whose span equals span{v1, . . . , vn}.

Proof. If v1, . . . , vn are linearly independent, then we are done. Otherwise, pick vj which is in
span{v1, . . . , vj−1, vj+1, . . . , vn}. Since span{v1, . . . , vj−1, vj+1, . . . , vn} = span{v1, . . . , vn}, we can
drop vj from this list without changing the span. Repeat this process until the resulting set is
linearly independent.

As a corollary, we can establish an important fact: every finite-dimensional vector space has a basis.

Proof. Let V be a finite-dimensional vector space. By definition, this means that there exist
v1, . . . , vn such that V = span{v1, . . . , vn}. By the previous result, there exists a linearly inde-
pendent subset of {v1, . . . , vn} whose span is V ; this subset is a basis for V .

Proposition 8. A linearly independent set of vectors in V can be extended to a basis for V .

Proof. Suppose v1, . . . , vn ∈ V are linearly independent. Let w1, . . . , wm be a basis for V . Then
v1, . . . , vn, w1, . . . , wm spans V , so there exists a subset of this set which is linearly independent
and also spans V . Moreover, by inspecting the process by which this linearly independent subset
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is produced, we see that none of v1, . . . , vn need be dropped because they are linearly independent.
Hence the resulting linearly independent set, which is basis for V , can be chosen to contain v1, . . . , vn.

The dimensions of sums of subspaces obey a friendly relationship:

Proposition 9. If U and W are subspaces of some vector space, then

dim(U +W ) = dimU + dimW − dim(U ∩W )

Proof. Let v1, . . . , vk be a basis for U ∩W , and extend this to bases v1, . . . , vk, u1, . . . , um for U and
v1, . . . , vk, w1, . . . , wn for W . We claim that v1, . . . , vk, u1, . . . , um, w1, . . . , wn is a basis for U +W .

If v ∈ U + W , then v = u + w for some u ∈ U,w ∈ W . Then since u = α1v1 + · · · + αkvk +
αk+1u1 · · ·+αk+mum for some α1, . . . , αk+m ∈ F and w = β1v1 + · · ·+ βkvk + βk+1w1 · · ·+ βk+nwn

for some β1, . . . , βk+n ∈ F, we have

v = u+ w

= α1v1 + · · ·+ αkvk + αk+1u1 · · ·+ αk+mum + β1v1 + · · ·+ βkvk + βk+1w1 · · ·+ βk+nwn

= (α1 + β1)v1 + · · ·+ (αk + βk)vk + αk+1u1 · · ·+ αk+mum + βk+1w1 · · ·+ βk+nwn

so v ∈ span{v1, . . . , vk, u1, . . . , um, w1, . . . , wn}. Moreover, the uniqueness of the expansion of v in
this set follows from the uniqueness of the expansions of u and w.

Thus v1, . . . , vk, u1, . . . , um, w1, . . . , wn is a basis for U +W as claimed, so

dimU + dimW − dim(U ∩W ) = (k +m) + (k + n)− k = k +m+ n = dim(U +W )

as we set out to show.

It follows immediately that
dim(U ⊕W ) = dimU + dimW

since dim(U ∩W ) = dim{0} = 0 if the sum is direct.

3 Linear maps

A linear map is a function T : V →W , where V and W are vector spaces over F, that satisfies

(i) T (u+ v) = T (u) + T (v) for all u, v ∈ V

(ii) T (αv) = αT (v) for all v ∈ V, α ∈ F

The standard notational convention for linear maps (which we will follow hereafter) is to drop
unnecessary parentheses, writing Tv rather than T (v) if there is no risk of ambiguity, and denote
composition of linear maps by ST rather than the usual S ◦ T .

The identity map on V , which sends each v ∈ V to v, is denoted IV , or just I if the vector space V
is clear from context. Note that all linear maps (not just the identity) send zero to zero.

Proof. For any v ∈ V we have
Tv = T (v + 0V ) = Tv + T0V

so by subtracting Tv from both sides we obtain T0V = 0W .
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One useful fact regarding linear maps (both conceptually and for proofs) is that they are uniquely
determined by their action on a basis.

Proposition 10. Let v1, . . . , vn be a basis for a vector space V , and w1, . . . , wn be arbitrary vectors
in a vector space W . Then there exists a unique linear map T : V →W such that

Tvj = wj

for all j = 1, . . . , n.

Proof. Define

T : V →W

α1v1 + · · ·+ αnvn 7→ α1w1 + · · ·+ αnwn

This function is well-defined because every vector in V can be expressed uniquely as a linear com-
bination of v1, . . . , vn. Then for any x = α1v1 + · · ·+ αnvn and y = β1v1 + · · ·+ βnvn in V ,

T (x+ y) = T (α1v1 + · · ·+ αnvn + β1v1 + · · ·+ βnvn)

= T ((α1 + β1)v1 + · · ·+ (αn + βn)vn)

= (α1 + β1)w1 + · · ·+ (αn + βn)wn

= α1w1 + · · ·+ αnwn + β1w1 + · · ·+ βnwn

= Tx+ Ty

and if γ ∈ F then

T (γx) = T (γ(α1v1 + · · ·+ αnvn))

= T ((γα1)v1 + · · ·+ (γαn)vn)

= (γα1)w1 + · · ·+ (γαn)wn

= γ(α1w1 + · · ·+ αnwn)

= γTx

so T is a linear map. Now observe that, by construction,

Tvj = T (0v1 + · · ·+ 0vj−1 + 1vj + 0vj+1 + · · ·+ 0vn)

= 0w1 + · · ·+ 0wj−1 + 1wj + 0wj+1 + · · ·+ 0wn

= wj

as desired. Towards uniqueness, suppose T̃ is a linear map which satisfies T̃ vj = wj for j = 1, . . . , n.
Any v ∈ V can be written uniquely as v = α1v1 + · · ·+ αnvn, and

T̃ (α1v1 + · · ·+ αnvn) = α1T̃ v1 + · · ·+ αnT̃ vn = α1w1 + · · ·+ αnwn

by the linearity of T̃ . Hence T̃ = T .

3.1 Isomorphisms

Observe that the definition of a linear map is suited to reflect the structure of vector spaces, since it
preserves vector spaces’ two main operations, addition and scalar multiplication. In algebraic terms,
a linear map is said to be a homomorphism of vector spaces. An invertible homomorphism where
the inverse is also a homomorphism is called an isomorphism. If there exists an isomorphism from
V to W , then V and W are said to be isomorphic, and we write V ∼= W . Isomorphic vector
spaces are essentially “the same” in terms of their algebraic structure. It is an interesting fact that
finite-dimensional vector spaces of the same dimension over the same field are always isomorphic.
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Proof. Let V and W be finite-dimensional vector spaces over F, with n , dimV = dimW . We
will show that V ∼= W by exhibiting an isomorphism from V to W . To this end, let v1, . . . , vn and
w1, . . . , wn be bases for V and W , respectively. Then there exist (unique) linear maps T : V → W
and S : W → V satisfying Tvj = wj and Swj = vj for all j = 1, . . . , n. Now clearly STvj = Swj = vj
for each j, so ST = IV . Similarly, TSwj = Tvj = wj for each j, so TS = IW . Hence S = T−1, so
T is an isomorphism, and hence V ∼= W .

3.2 Algebra of linear maps

Linear maps can be added and scaled to produce new linear maps. That is, if S and T are lin-
ear maps from V into W , and α ∈ F, it is straightforward to verify that S + T and αT are
linear maps from V into W . Since addition and scaling of functions satisfy the usual commutativ-
ity/associativity/distributivity rules, the set of linear maps from V into W is also a vector space
over F; we denote this space by L(V,W ). The additive identity here is the zero map which sends
every v ∈ V to 0W .

The composition of linear maps is also a linear map.

Proposition 11. Let U , V , and W be vector spaces over a common field F, and suppose S : V →W
and T : U → V are linear maps. Then the composition ST : U →W is also a linear map.

Proof. For any u, v ∈ U ,

(ST )(u+ v) = S(T (u+ v)) = S(Tu+ Tv) = STu+ STv

and furthermore if α ∈ F then

(ST )(αv) = S(T (αv)) = S(αTv) = αSTv

so ST is linear.

The identity map is a “multiplicative” identity here, as TIV = IWT = T for any T : V →W .

3.3 Nullspace

If T : V →W is a linear map, the nullspace1 of T is the set of all vectors in V that get mapped to
zero:

null(T ) , {v ∈ V : Tv = 0W }

Proposition 12. If T : V →W is a linear map, then null(T ) is a subspace of V .

Proof. (i) We have already seen that T (0V ) = 0W , so 0V ∈ null(T ).

(ii) If u, v ∈ null(T ), then
T (u+ v) = Tu+ Tv = 0W + 0W = 0W

so u+ v ∈ null(T ).

1 It is sometimes called the kernel by algebraists, but we eschew this terminology because the word “kernel” has
another meaning in machine learning.
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(iii) If v ∈ null(T ), α ∈ F, then
T (αv) = αTv = α0W = 0W

so αv ∈ null(T ).

Thus null(T ) is a subspace of V .

Proposition 13. A linear map T : V →W is injective if and only if null(T ) = {0V }.

Proof. Assume T is injective. We have seen that T0V = 0W , so 0V ∈ null(T ), and moreover if
Tv = 0W the injectivity of T implies v = 0V , so null(T ) = {0V }.
Conversely, assume null(T ) = {0V }, and suppose Tu = Tv for some u, v ∈ V . Then

0 = Tu− Tv = T (u− v)

so u− v ∈ null(T ), which by assumption implies u− v = 0, i.e. u = v. Hence T is injective.

3.4 Range

The range of T is (as for any function) the set of all possible outputs of T :

range(T ) , {Tv : v ∈ V }

Proposition 14. If T : V →W is a linear map, then range(T ) is a subspace of W .

Proof. (i) We have already seen that T (0V ) = 0W , so 0W ∈ range(T ).

(ii) If w, z ∈ range(T ), there exist u, v ∈ V such that w = Tu and z = Tv. Then

T (u+ v) = Tu+ Tv = w + z

so w + z ∈ range(T ).

(iii) If w ∈ range(T ), α ∈ F, there exists v ∈ V such that w = Tv. Then

T (αv) = αTv = αw

so αw ∈ range(T ).

Thus range(T ) is a subspace of W .

4 Eigenvalues and eigenvectors

In the special case where the domain and codomain of a linear map are the same, certain vectors
may have the special property that the map simply scales them. If T : V → V is a linear map and
v ∈ V is nonzero, then v is said to be an eigenvector of T with corresponding eigenvalue λ ∈ F if

Tv = λv

or equivalently, if
v ∈ null(T − λI)

This second definition makes it clear that the set of eigenvectors corresponding to a given eigenvalue
(along with 0) is a vector space. This vector space is called the eigenspace of T associated with λ.
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