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1 Matrix Decomposition’s

Matrix decomposition’s are techniques used to factor matrices into simpler
forms. This process is incredibly useful for solving linear equations, performing
numerical analysis, and in machine learning algorithms. Understanding these
decomposition’s is essential for advanced courses in computer science, particu-
larly in fields such as data science, numerical methods, optimization, and com-
puter vision.

In this document, we will cover three essential matrix decomposition’s:

e LU Decomposition

e QR Decomposition

e Singular Value Decomposition (SVD)

We will explain each decomposition step-by-step, along with examples, ap-

plications, and diagrams to give you a strong foundation.

1.1 LU Decomposition

LU decomposition factors a matrix A into two triangular matrices:
A=LU

where: - L is a lower triangular matrix (with ones on the diagonal). - U is an
upper triangular matrix.

Why is LU Decomposition useful? LU decomposition is useful for solv-
ing systems of linear equations, particularly when the same matrix is used with
different right-hand sides. It is also used in calculating matrix determinants and
inverses, and in numerical stability analyses.



1.1.1 Detailed Explanation

Given an n x n matrix A, LU decomposition expresses A as the product of two
matrices L and U, where:
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S 0 ' 3 Unn
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1.1.2 Example of LU Decomposition

Let’s break down a 3x3 matrix using LU decomposition.

2 3 1
A=14 7 -1
-2 4 5

Step 1: Apply Gaussian elimination to reduce A into upper triangular form
U:
2 3 1
U=10 1 -3
0 0 2

Step 2: Construct the lower triangular matrix L by recording the factors
used to eliminate the lower elements:

1 0 0
L=]2 10

-1 4 1
Thus, A = LU, where:

1 0 0 2 3 1
L=]2 10 and U=1|0 1 -3
-1 4 1 0 0 2

1.1.3 Applications of LU Decomposition

1. Solving Linear Systems: Once a matrix A is decomposed into LU, solving
Ax = b becomes easier by solving Ly = b and then Uz = y through forward and
backward substitution. 2. Matrix Inversion: Inverting A can be performed
by inverting L and U, which is computationally simpler. 3. Determinants:
The determinant of A can be easily computed as the product of the diagonal
elements of U.



1.2 QR Decomposition

QR decomposition breaks a matrix A into:
A=QR

where: - @) is an orthogonal matrix (i.e., QTQ = I). - R is an upper triangular
matrix.

Why is QR Decomposition useful? QR decomposition is used in solving
linear systems, least squares problems, and in algorithms for eigenvalue compu-
tation (like the QR algorithm).

1.2.1 Detailed Explanation

Given an m x n matrix A, the QR decomposition represents A as the product
of an orthogonal matrix @ (with orthonormal columns) and an upper trian-
gular matrix R. The orthonormality of ) means that the columns of Q) are
perpendicular to each other and have unit length.

1.2.2 Example of QR Decomposition

Consider the matrix:

1 1
A=11 -1
1 1

Step 1: We apply the Gram-Schmidt process to orthogonalize the columns
of A. The result is:

1 1
VEREV
- | L 2
CTIE e
V3 V6

Step 2: Compute R by multiplying Q7 with A:

[ 3

Thus, A = QR.

1.2.3 Applications of QR Decomposition

1. Solving Least Squares Problems: QR decomposition is used to solve
Az = b when A is not square by minimizing the residual || Az — b||. 2. Eigen-
value Computation: The QR algorithm is a common method to compute
the eigenvalues and eigenvectors of a matrix. 3. Stability: QR decomposition
provides a numerically stable method for matrix factorization, especially for
ill-conditioned matrices.



1.3 Singular Value Decomposition (SVD)

SVD is one of the most powerful matrix factorizations and represents a matrix
A as:
A=UzvT"

where: - U is an orthogonal matrix containing the left singular vectors. - ¥ is a
diagonal matrix with the singular values. - V7 is the transpose of an orthogonal
matrix containing the right singular vectors.

Why is SVD important? SVD is fundamental in areas like dimensionality
reduction, data compression, and machine learning, particularly in principal
component analysis (PCA) and latent semantic analysis (LSA).

1.3.1 Detailed Explanation

The matrix A is decomposed into three components: - U: Columns of U are
the eigenvectors of AAT. - ¥: The diagonal elements of ¥ are the square roots
of the eigenvalues of AT A, also known as the singular values. - V: Columns of
V are the eigenvectors of AT A.

1.3.2 Example of SVD

Let’s consider the matrix:
A 4 0
T 13 =5
Step 1: Compute AT A and AAT, then find their eigenvalues and eigenvec-
tors.

Step 2: The singular values are the square roots of the eigenvalues of AT A.
For this matrix, we obtain:

o8 06 50 v [06 08
U_{O.G —0.8]’ Z_{o 1]’ v _[—0.8 0.6}

Thus, A =UXVT.

1.3.3 Applications of SVD

1. Dimensionality Reduction: In machine learning and data science, SVD is
used to reduce the dimensionality of data while preserving important informa-
tion (e.g., PCA). 2. Image Compression: SVD can be used to approximate
an image matrix with fewer singular values, leading to significant compression.
3. Latent Semantic Analysis (LSA): In natural language processing, SVD
is used to discover relationships between terms and documents in large text
corpora.



2 Conclusion

Matrix decompositions such as LU, QR, and SVD play a critical role in various
computational fields, including numerical linear algebra, machine learning, and
optimization. Mastery of these concepts is crucial for students at Stanford
and beyond, as they are the foundation for many advanced algorithms and
applications.



