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Lecture 3
Linear algebra review

• vector space, subspaces

• independence, basis, dimension

• range, nullspace, rank

• change of coordinates

• norm, angle, inner product
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Vector spaces

a vector space or linear space (over the reals) consists of

• a set V

• a vector sum + : V × V → V

• a scalar multiplication : R × V → V

• a distinguished element 0 ∈ V

which satisfy a list of properties
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• x + y = y + x, ∀x, y ∈ V (+ is commutative)

• (x + y) + z = x + (y + z), ∀x, y, z ∈ V (+ is associative)

• 0 + x = x, ∀x ∈ V (0 is additive identity)

• ∀x ∈ V ∃(−x) ∈ V s.t. x + (−x) = 0 (existence of additive inverse)

• (αβ)x = α(βx), ∀α, β ∈ R ∀x ∈ V (scalar mult. is associative)

• α(x + y) = αx + αy, ∀α ∈ R ∀x, y ∈ V (right distributive rule)

• (α + β)x = αx + βx, ∀α, β ∈ R ∀x ∈ V (left distributive rule)

• 1x = x, ∀x ∈ V
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Examples

• V1 = Rn, with standard (componentwise) vector addition and scalar
multiplication

• V2 = {0} (where 0 ∈ Rn)

• V3 = span(v1, v2, . . . , vk) where

span(v1, v2, . . . , vk) = {α1v1 + · · · + αkvk | αi ∈ R}

and v1, . . . , vk ∈ Rn
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Subspaces

• a subspace of a vector space is a subset of a vector space which is itself
a vector space

• roughly speaking, a subspace is closed under vector addition and scalar
multiplication

• examples V1, V2, V3 above are subspaces of Rn
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Vector spaces of functions

• V4 = {x : R+ → Rn | x is differentiable}, where vector sum is sum of
functions:

(x + z)(t) = x(t) + z(t)

and scalar multiplication is defined by

(αx)(t) = αx(t)

(a point in V4 is a trajectory in Rn)

• V5 = {x ∈ V4 | ẋ = Ax}
(points in V5 are trajectories of the linear system ẋ = Ax)

• V5 is a subspace of V4
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Independent set of vectors

a set of vectors {v1, v2, . . . , vk} is independent if

α1v1 + α2v2 + · · · + αkvk = 0 =⇒ α1 = α2 = · · · = 0

some equivalent conditions:

• coefficients of α1v1 + α2v2 + · · · + αkvk are uniquely determined, i.e.,

α1v1 + α2v2 + · · · + αkvk = β1v1 + β2v2 + · · · + βkvk

implies α1 = β1, α2 = β2, . . . , αk = βk

• no vector vi can be expressed as a linear combination of the other
vectors v1, . . . , vi−1, vi+1, . . . , vk
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Basis and dimension

set of vectors {v1, v2, . . . , vk} is a basis for a vector space V if

• v1, v2, . . . , vk span V, i.e., V = span(v1, v2, . . . , vk)

• {v1, v2, . . . , vk} is independent

equivalent: every v ∈ V can be uniquely expressed as

v = α1v1 + · · · + αkvk

fact: for a given vector space V, the number of vectors in any basis is the
same

number of vectors in any basis is called the dimension of V, denoted dimV

(we assign dim{0} = 0, and dimV = ∞ if there is no basis)
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Nullspace of a matrix

the nullspace of A ∈ Rm×n is defined as

N (A) = { x ∈ Rn | Ax = 0 }

• N (A) is set of vectors mapped to zero by y = Ax

• N (A) is set of vectors orthogonal to all rows of A

N (A) gives ambiguity in x given y = Ax:

• if y = Ax and z ∈ N (A), then y = A(x + z)

• conversely, if y = Ax and y = Ax̃, then x̃ = x + z for some z ∈ N (A)
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Zero nullspace

A is called one-to-one if 0 is the only element of its nullspace:
N (A) = {0} ⇐⇒

• x can always be uniquely determined from y = Ax
(i.e., the linear transformation y = Ax doesn’t ‘lose’ information)

• mapping from x to Ax is one-to-one: different x’s map to different y’s

• columns of A are independent (hence, a basis for their span)

• A has a left inverse, i.e., there is a matrix B ∈ Rn×m s.t. BA = I

• det(ATA) 6= 0

(we’ll establish these later)
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Interpretations of nullspace

suppose z ∈ N (A)

y = Ax represents measurement of x

• z is undetectable from sensors — get zero sensor readings

• x and x + z are indistinguishable from sensors: Ax = A(x + z)

N (A) characterizes ambiguity in x from measurement y = Ax

y = Ax represents output resulting from input x

• z is an input with no result

• x and x + z have same result

N (A) characterizes freedom of input choice for given result
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Range of a matrix

the range of A ∈ Rm×n is defined as

R(A) = {Ax | x ∈ Rn} ⊆ Rm

R(A) can be interpreted as

• the set of vectors that can be ‘hit’ by linear mapping y = Ax

• the span of columns of A

• the set of vectors y for which Ax = y has a solution
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Onto matrices

A is called onto if R(A) = Rm ⇐⇒

• Ax = y can be solved in x for any y

• columns of A span Rm

• A has a right inverse, i.e., there is a matrix B ∈ Rn×m s.t. AB = I

• rows of A are independent

• N (AT ) = {0}

• det(AAT ) 6= 0

(some of these are not obvious; we’ll establish them later)
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Interpretations of range

suppose v ∈ R(A), w 6∈ R(A)

y = Ax represents measurement of x

• y = v is a possible or consistent sensor signal

• y = w is impossible or inconsistent; sensors have failed or model is
wrong

y = Ax represents output resulting from input x

• v is a possible result or output

• w cannot be a result or output

R(A) characterizes the possible results or achievable outputs
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Inverse

A ∈ Rn×n is invertible or nonsingular if det A 6= 0

equivalent conditions:

• columns of A are a basis for Rn

• rows of A are a basis for Rn

• y = Ax has a unique solution x for every y ∈ Rn

• A has a (left and right) inverse denoted A−1 ∈ Rn×n, with
AA−1 = A−1A = I

• N (A) = {0}

• R(A) = Rn

• det ATA = det AAT 6= 0
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Interpretations of inverse

suppose A ∈ Rn×n has inverse B = A−1

• mapping associated with B undoes mapping associated with A (applied
either before or after!)

• x = By is a perfect (pre- or post-) equalizer for the channel y = Ax

• x = By is unique solution of Ax = y
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Dual basis interpretation

• let ai be columns of A, and b̃T
i be rows of B = A−1

• from y = x1a1 + · · · + xnan and xi = b̃T
i y, we get

y =

n
∑

i=1

(b̃T
i y)ai

thus, inner product with rows of inverse matrix gives the coefficients in
the expansion of a vector in the columns of the matrix

• b̃1, . . . , b̃n and a1, . . . , an are called dual bases

Linear algebra review 3–17



Rank of a matrix

we define the rank of A ∈ Rm×n as

rank(A) = dimR(A)

(nontrivial) facts:

• rank(A) = rank(AT )

• rank(A) is maximum number of independent columns (or rows) of A
hence rank(A) ≤ min(m,n)

• rank(A) + dimN (A) = n
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Conservation of dimension

interpretation of rank(A) + dimN (A) = n:

• rank(A) is dimension of set ‘hit’ by the mapping y = Ax

• dimN (A) is dimension of set of x ‘crushed’ to zero by y = Ax

• ‘conservation of dimension’: each dimension of input is either crushed
to zero or ends up in output

• roughly speaking:

– n is number of degrees of freedom in input x
– dimN (A) is number of degrees of freedom lost in the mapping from

x to y = Ax
– rank(A) is number of degrees of freedom in output y
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‘Coding’ interpretation of rank

• rank of product: rank(BC) ≤ min{rank(B), rank(C)}

• hence if A = BC with B ∈ Rm×r, C ∈ Rr×n, then rank(A) ≤ r

• conversely: if rank(A) = r then A ∈ Rm×n can be factored as A = BC
with B ∈ Rm×r, C ∈ Rr×n:

mm nn rxx yy

rank(A) lines

BCA

• rank(A) = r is minimum size of vector needed to faithfully reconstruct
y from x
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Application: fast matrix-vector multiplication

• need to compute matrix-vector product y = Ax, A ∈ Rm×n

• A has known factorization A = BC, B ∈ Rm×r

• computing y = Ax directly: mn operations

• computing y = Ax as y = B(Cx) (compute z = Cx first, then
y = Bz): rn + mr = (m + n)r operations

• savings can be considerable if r ≪ min{m,n}
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Full rank matrices

for A ∈ Rm×n we always have rank(A) ≤ min(m,n)

we say A is full rank if rank(A) = min(m,n)

• for square matrices, full rank means nonsingular

• for skinny matrices (m ≥ n), full rank means columns are independent

• for fat matrices (m ≤ n), full rank means rows are independent
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Change of coordinates

‘standard’ basis vectors in Rn: (e1, e2, . . . , en) where

ei =













0
...
1
...
0













(1 in ith component)

obviously we have

x = x1e1 + x2e2 + · · · + xnen

xi are called the coordinates of x (in the standard basis)
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if (t1, t2, . . . , tn) is another basis for Rn, we have

x = x̃1t1 + x̃2t2 + · · · + x̃ntn

where x̃i are the coordinates of x in the basis (t1, t2, . . . , tn)

define T =
[

t1 t2 · · · tn
]

so x = T x̃, hence

x̃ = T−1x

(T is invertible since ti are a basis)

T−1 transforms (standard basis) coordinates of x into ti-coordinates

inner product ith row of T−1 with x extracts ti-coordinate of x

Linear algebra review 3–24



consider linear transformation y = Ax, A ∈ Rn×n

express y and x in terms of t1, t2 . . . , tn:

x = T x̃, y = T ỹ

so
ỹ = (T−1AT )x̃

• A −→ T−1AT is called similarity transformation

• similarity transformation by T expresses linear transformation y = Ax in
coordinates t1, t2, . . . , tn
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(Euclidean) norm

for x ∈ Rn we define the (Euclidean) norm as

‖x‖ =
√

x2
1 + x2

2 + · · · + x2
n =

√
xTx

‖x‖ measures length of vector (from origin)

important properties:

• ‖αx‖ = |α|‖x‖ (homogeneity)

• ‖x + y‖ ≤ ‖x‖ + ‖y‖ (triangle inequality)

• ‖x‖ ≥ 0 (nonnegativity)

• ‖x‖ = 0 ⇐⇒ x = 0 (definiteness)
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RMS value and (Euclidean) distance

root-mean-square (RMS) value of vector x ∈ Rn:

rms(x) =

(

1

n

n
∑

i=1

x2
i

)1/2

=
‖x‖√

n

norm defines distance between vectors: dist(x, y) = ‖x − y‖
x

y

x − y
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Inner product

〈x, y〉 := x1y1 + x2y2 + · · · + xnyn = xTy

important properties:

• 〈αx, y〉 = α〈x, y〉
• 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉
• 〈x, y〉 = 〈y, x〉
• 〈x, x〉 ≥ 0

• 〈x, x〉 = 0 ⇐⇒ x = 0

f(y) = 〈x, y〉 is linear function : Rn → R, with linear map defined by row
vector xT
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Cauchy-Schwartz inequality and angle between vectors

• for any x, y ∈ Rn, |xTy| ≤ ‖x‖‖y‖

• (unsigned) angle between vectors in Rn defined as

θ = 6 (x, y) = cos−1 xTy

‖x‖‖y‖

x

y

θ
(

xT y
‖y‖2

)

y

thus xTy = ‖x‖‖y‖ cos θ
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special cases:

• x and y are aligned : θ = 0; xTy = ‖x‖‖y‖;
(if x 6= 0) y = αx for some α ≥ 0

• x and y are opposed : θ = π; xTy = −‖x‖‖y‖
(if x 6= 0) y = −αx for some α ≥ 0

• x and y are orthogonal : θ = π/2 or −π/2; xTy = 0
denoted x ⊥ y
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interpretation of xTy > 0 and xTy < 0:

• xTy > 0 means 6 (x, y) is acute

• xTy < 0 means 6 (x, y) is obtuse

x x

y y
xTy < 0xTy > 0

{x | xTy ≤ 0} defines a halfspace with outward normal vector y, and
boundary passing through 0

0

{x | xTy ≤ 0}

y
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