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1 Inner Product Spaces

1.1 Definition of Inner Product Spaces

An inner product space is a vector space V over the field R (real numbers)
or C (complex numbers), equipped with a binary operation called the inner
product. This operation takes two vectors u,v ∈ V and returns a scalar ⟨u,v⟩.
The inner product generalizes the dot product and allows us to measure angles,
lengths, and define geometric properties in higher dimensions.

For an inner product, the following properties hold:

1. Linearity in the first argument:

⟨au+ bv,w⟩ = a⟨u,w⟩+ b⟨v,w⟩

2. Conjugate symmetry (for complex spaces):

⟨u,v⟩ = ⟨v,u⟩

3. Positivity:

⟨u,u⟩ ≥ 0 and ⟨u,u⟩ = 0 if and only if u = 0

1.2 Norms and Inner Products

A norm is a function that assigns a length to vectors. For any vector u ∈ V ,
its norm is defined using the inner product:

∥u∥ =
√
⟨u,u⟩

This norm tells us the ”magnitude” or length of the vector u.
Properties of norms: - ∥u∥ ≥ 0 (non-negativity), - ∥u∥ = 0 if and only

if u = 0, - ∥cu∥ = |c|∥u∥ for any scalar c, - The triangle inequality: ∥u+ v∥ ≤
∥u∥+ ∥v∥.
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1.3 Examples of Inner Product Spaces

1. Real space Rn:

• The standard inner product (dot product) in Rn for vectors u =
(u1, u2, . . . , un) and v = (v1, v2, . . . , vn) is:

⟨u,v⟩ =
n∑

i=1

uivi

• This measures the alignment of vectors.

2. Complex space Cn:

• For complex vectors u and v, the inner product is:

⟨u,v⟩ =
n∑

i=1

uivi

• where vi denotes the complex conjugate of vi.

1.4 Orthogonality and Orthonormal Sets

Orthogonality: Two vectors u and v in a vector space V are said to be
orthogonal if their inner product is zero:

⟨u,v⟩ = 0

In a geometric sense, orthogonal vectors are perpendicular to each other. This
orthogonality simplifies many linear algebra operations and is a key concept in
projections and decompositions.

Example: Consider two vectors u = (1, 2) and v = (−2, 1) in R2. Their
inner product is:

⟨u,v⟩ = (1)(−2) + (2)(1) = −2 + 2 = 0

Since the inner product is zero, the vectors u and v are orthogonal.
Diagram of Orthogonality:

u

v
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y

O

90◦
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Orthonormal Sets: An orthonormal set is a set of vectors where each
pair of vectors is orthogonal, and each vector has a unit norm:

∥v∥ = 1

Mathematically, a set of vectors {e1, e2, . . . , ek} is orthonormal if:

⟨ei, ej⟩ = δij

where δij is the Kronecker delta, which is 1 if i = j and 0 otherwise.
Example: In R3, the standard basis vectors e1 = (1, 0, 0), e2 = (0, 1, 0),

and e3 = (0, 0, 1) form an orthonormal set. We have:

⟨e1, e2⟩ = 0, ⟨e1, e3⟩ = 0, ⟨e2, e3⟩ = 0

and
∥e1∥ = 1, ∥e2∥ = 1, ∥e3∥ = 1

Diagram of Orthonormal Set:

e1

e2

e3
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Importance: Orthonormal sets are particularly useful in simplifying calcu-
lations, especially in methods like the Gram-Schmidt process for orthogonalizing
vectors. They also form the basis for Fourier series and other decompositions in
signal processing and various applications in computer science and engineering.

1.5 Applications of Inner Products

Inner products are fundamental in various fields, providing a way to quantify
relationships and interactions between vectors. Here, we explore some of their
key applications:

Machine Learning: Inner products are crucial in machine learning for
measuring similarities and projections between data points. For instance:

• Support Vector Machines (SVMs): In SVMs, the inner product is
used to compute the dot product between feature vectors. This helps
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in determining the decision boundary that separates different classes in
high-dimensional spaces. The kernel trick, which uses inner products in
feature space, enables SVMs to perform classification in non-linear decision
boundaries by implicitly mapping data into higher-dimensional space.

• Cosine Similarity: This measure of similarity between two non-zero
vectors u and v is defined as:

Cosine Similarity =
⟨u,v⟩
∥u∥∥v∥

It quantifies the cosine of the angle between the vectors, providing a mea-
sure of similarity that is invariant to the magnitude of the vectors.

Physics: In physics, inner products are used to represent physical quantities
and interactions:

• Work Done: When a force F is applied to an object and displaces it by
a vector d, the work done W is given by the inner product of these two
vectors:

W = ⟨F,d⟩ = ∥F∥∥d∥ cos θ

where θ is the angle between the force and displacement vectors. This
formula quantifies how much of the force contributes to the displacement
in the direction of the force.

• Quantum Mechanics: In quantum mechanics, inner products are used
to compute probabilities and expectation values. For example, the inner
product of a state vector with itself gives the probability amplitude, and
the inner product of two different state vectors represents the overlap
between quantum states.

Additional Applications:

• Signal Processing: Inner products are used to analyze and filter signals.
Techniques such as Fourier transforms decompose signals into orthogonal
components, making it easier to process and analyze them.

• Computer Graphics: In graphics, inner products are used to calculate
angles and lighting effects. For instance, the dot product of a surface
normal vector and a light direction vector determines how much light is
hitting the surface, affecting the shading and rendering of objects.

Summary: Inner products are versatile tools that find applications across
various domains, from measuring similarities in machine learning to calculating
physical quantities in physics. They provide a robust framework for under-
standing relationships between vectors and performing complex computations
efficiently.
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2 Operators on Hilbert Spaces

2.1 Linear Operators

A linear operator T on a Hilbert space H is a special kind of function that
maps vectors in H to other vectors in H. It has two key properties:

• Additivity: If you take two vectors u and v in H, then:

T (u+ v) = T (u) + T (v)

This means that T distributes over addition.

• Homogeneity: If you scale a vector u by a scalar a, then:

T (au) = aT (u)

This means that T scales with the vector.

• Example: Consider a Hilbert space H of all vectors in R2, and let T be
a function defined as:

T

((
x
y

))
=

(
2x
3y

)
This is a linear operator because it satisfies both additivity and homo-
geneity.

2.2 Spectral Theorem

The spectral theorem is an important result about linear operators, especially
in quantum mechanics and signal processing. It states:

• Self-Adjoint Operators: If T is a self-adjoint operator (meaning T =
T ∗, where T ∗ is the adjoint of T ), then it can be diagonalized. This means
that there exists an orthonormal basis of H consisting of eigenvectors of
T , and T can be represented as a diagonal matrix in this basis.

• Example: Suppose T is a matrix representing a linear operator in R2:

T =

(
4 1
1 4

)
The matrix T is symmetric (self-adjoint), and according to the spectral
theorem, it can be diagonalized. The eigenvalues and eigenvectors provide
the diagonal form of T .

• Diagram: In a geometric sense, diagonalization can be visualized as
transforming the space so that the operator T simply scales vectors along
coordinate axes, rather than rotating or shearing them.
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2.3 Positivity of Operators

An operator T is said to be positive if:

⟨Tu,u⟩ ≥ 0

for all vectors u in H. This means that applying T to any vector u will result
in a vector that has a non-negative projection onto u.

• Example: Consider a matrix T in R2:

T =

(
2 0
0 2

)

For any vector u =

(
x
y

)
,

⟨Tu,u⟩ =
(
2x
2y

)
·
(
x
y

)
= 2x2 + 2y2 ≥ 0

Hence, T is a positive operator.

• Applications: Positive operators are used in quantum mechanics to rep-
resent observable quantities, and in optimization problems to ensure that
certain criteria are met.

Summary:

• Linear Operators: Functions that preserve vector addition and scalar
multiplication.

• Spectral Theorem: Self-adjoin operators can be diagonalized, simplify-
ing many problems.

• Positivity: An operator is positive if it always yields non-negative results
when applied to vectors.

This section covers the essentials of operators on Hilbert spaces, providing a
foundation for more advanced topics in functional analysis and applications in
various scientific fields.

3 Diagonalization

3.1 Eigenvalues and Eigenvectors

In linear algebra, eigenvalues and eigenvectors are fundamental concepts
that help us understand how matrices transform space.
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• An eigenvalue λ of a square matrix A is a special scalar such that when
the matrix A acts on some vector v, the result is simply the eigenvector
v scaled by λ. Mathematically:

Av = λv

Here, v is the eigenvector corresponding to the eigenvalue λ.

• To find eigenvalues, solve the characteristic equation:

det(A− λI) = 0

where I is the identity matrix of the same size as A, and det denotes the
determinant of a matrix.

3.2 Example: Finding Eigenvalues and Eigenvectors

Let’s find the eigenvalues and eigenvectors of the matrix:

A =

[
4 1
2 3

]
1. Compute the characteristic equation:

det(A− λI) = det

[
4− λ 1
2 3− λ

]
This simplifies to:

(4− λ)(3− λ)− 2 = λ2 − 7λ+ 10 = 0

2. Solve for λ:
λ2 − 7λ+ 10 = 0

Factoring or using the quadratic formula gives the eigenvalues:

λ1 = 5 and λ2 = 2

3. Find the eigenvectors by substituting each eigenvalue λ back into the
equation (A− λI)v = 0.

For λ1 = 5: [
−1 1
2 −2

]
v = 0

Solving this gives the eigenvector:

v1 =

[
1
2

]
For λ2 = 2: [

2 1
2 1

]
v = 0

Solving this gives the eigenvector:

v2 =

[
−1
1

]
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3.3 Diagonalization Process

A matrix A is diagonalizable if it can be written in the form:

A = PDP−1

where P is an invertible matrix and D is a diagonal matrix.

• Diagonal Matrix D: Contains the eigenvalues of A on its diagonal.

• Matrix P : Contains the corresponding eigenvectors of A as its columns.

Example: Using the eigenvalues λ1 = 5 and λ2 = 2 and their eigenvectors
v1 and v2, we can form:

P =

[
1 −1
2 1

]
, D =

[
5 0
0 2

]
Then:

A = PDP−1

3.4 Conditions for Diagonalizability

A matrix A is diagonalizable if and only if there are enough linearly independent
eigenvectors to form a basis for the space. Specifically, for an n × n matrix, if
there are n linearly independent eigenvectors, the matrix is diagonalizable.

4 Jordan Normal Form

4.1 Jordan Blocks

When a matrix is not diagonalizable, it can be transformed into a Jordan
normal form. This form is nearly diagonal but consists of Jordan blocks.
Each Jordan block corresponds to an eigenvalue and has the following structure:

J =


λ 1 0 · · · 0
0 λ 1 · · · 0
0 0 λ · · · 0
...

...
...

. . . 1
0 0 0 · · · λ


Here, λ is an eigenvalue, and the 1s on the superdiagonal indicate the presence
of generalized eigenvectors.

8



4.2 Applications of Jordan Normal Form

Jordan normal form is useful in various fields:

• Differential Equations: Helps in solving systems of linear differential
equations by simplifying the matrix representations.

• Control Theory: Used to analyze and design control systems by simpli-
fying the state-space representation of systems.

• Stability Analysis: Assists in understanding the stability of dynamical
systems by analyzing their Jordan form.

Example: Consider a matrix that is not diagonalizable but can be put into
Jordan form. If the matrix A is:

A =

[
4 1
0 4

]
It can be transformed into Jordan form:

J =

[
4 1
0 4

]
where λ = 4 is the eigenvalue, and the Jordan block captures the non-

diagonalizable nature of A.
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