CM1015 Combined Transformations: Examples and Exercises

Overview

When you have two transformation matrices you can either apply them sequentially or combine them into
one matrix. For instance, if you first apply a transformation A and then B (i.e. B(Av) for a vector v), you

can combine them into one matrix
C = BA,

so that
Cv = B(Av).

In the sections below we consider three cases:
1. Simple: Rotation and Scaling.
2. Intermediate: Reflection and Shear.

3. Advanced: Rotation and Non-Uniform Scaling.

After a brief example explanation for each, you will find five exercises with the answers shown in red.



1 Simple Combined Transformations: Rotation and Scaling

We use:
A= [O _01} (rotation by 90° counterclockwise)

kO
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where k is the scaling factor. The combined transformation is C = BA.

and a scaling matrix

Exercises (Simple)

1. Problem 1: Given )
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Compute Av, then B(Av), and find the combined matrix C = BA. Answer: Av = {_11}: hence

B(Av) = [_22} . The combined matrix is C' = B _02}, so Cv = {_22 .
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Find the transformed vector using the combined transformation. Answer: Av = { 9 } and B(Av) =

2. Problem 2: Let
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{ 6 } The combined matrix is C' = {3 0 }, so Cv = { 6 }

3. Problem 3: Now use a rotation by 180° and scaling by 2. Let
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1 } . The combined matrix is C' = BA =

Compute the result. Answer: Av = {
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4. Problem 4: Given
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determine the transformed vector. Answer: Av = {_42} and B(Av) = {_21} The combined matrix
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is C = {0.5 0

5. Problem 5: With
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compute the result of the combined transformation. Answer: Av =

-3 and B(Av) = -0 . The
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combined matrix remains C' = 9 0| % Cv= ol



2 Intermediate Combined Transformations: Reflection and Shear

Here we use a reflection across the z-axis:
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and a shear transformation that adds a multiple of the y-coordinate to the z-coordinate:
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so that the combined transformation is C' = SR.

Exercises (Intermediate)

1. Problem 1: Given
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3 } then S(Rv) = {3 +2(_1)} . [ ! }

compute the combined transformation. Answer: Rv = {1 1

The combined matrix is SR = B ﬂ .
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Compute the transformed vector. Answer: Rv = 2 } then S(Rv) = [2 N 3(0)} = {153}. The
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2. Problem 2: With

find the result of the transformation. Answer: Rv = { 4

} : then S(Rv) = {—2 + 2(—4)}
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3. Problem 3: Now let

combined matrix is SR = {(1) ﬂ .
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4. Problem 4: Given

determine the output vector. Answer: Rv = [ﬂ then S(Rv) = F * (21)(2)} = {21}
5. Problem 5: With . ) A
b 8 sof 4 [
compute the combined transformation. Answer: Rv = [:;l} then S(Rv) = {_4 +_0§(_3)} =

—5.5 . ..
. The combined matrix is SR =
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3 Advanced Combined Transformations: Rotation and Non-Uniform
Scaling

In these examples we combine a rotation with non-uniform scaling. Let
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be a non-uniform scaling matrix. Their combined transformation is C' = SR.

be a rotation matrix and

Exercises (Advanced)

1. Problem 1: Let 6 = 30° so that cos30° = § and sin30° = 1. Take
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Find S(Rv). Answer: First,
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2. Problem 2: With the same rotation R as in Problem 1 (30°) and now let
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Compute the result of S(Rv). Answer: Compute
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Then,
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3. Problem 3: Let 6 = 45° so that cos45° = sin45° = g Define
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Determine S(Rv). Answer: Rv = 55 so that
2
S(Rv) = =1 2.
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4. Problem 4: Let § = 60° (with cos60° = 0.5, sin60° = ?) and take
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Compute the transformed vector. Answer: Rv = 0 ; and then
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5. Problem 5: With 6 = 45° so that
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determine S(Rv). Answer: First,

Rv =
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