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What's in Common

● Each of these structures consists of
● a collection of objects and
● links between those objects.

● Goal: fnd a general framework for 
describing these objects and their 
properties.



  

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes 
connected by edges.
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A graph is a mathematical structure
for representing relationships.
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Some graphs are directed.
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Some graphs are undirected.



  

Going forward, we're primarily going to 
focus on undirected graphs.

 

The term “graph” generally refers to 
undirected graphs with a fnite number of 

nodes, unless specifed otherwise.



  

Formalizing Graphs

● How might we defne a graph 
mathematically?

● We need to specify
● what the nodes in the graph are, and
● which edges are in the graph.

● The nodes can be pretty much anything.
● What about the edges?



  

Formalizing Graphs

● An unordered pair is a set {a, b} of two elements 
a ≠ b. (Remember that sets are unordered).
● {0, 1} = {1, 0}

● An undirected graph is an ordered pair G = (V, E), 
where
● V is a set of nodes, which can be anything, and
● E is a set of edges, which are unordered pairs of nodes 

drawn from V.
● A directed graph is an ordered pair G = (V, E), 

where
● V is a set of nodes, which can be anything, and
● E is a set of edges, which are ordered pairs of nodes 

drawn from V.



  

Self-Loops

● An edge from a node to itself is called a self-loop.
● In undirected graphs, self-loops are generally not 

allowed.
● Can you see how this follows from the defnition?

● In directed graphs, self-loops are generally 
allowed unless specifed otherwise.

✓×



  

Standard Graph Terminology
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Two nodes are called adjacent if there is an edge 
between them.
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Using our Formalisms

● Let G = (V, E) be a graph.
● Intuitively, two nodes are adjacent if 

they're linked by an edge.
● Formally speaking, we say that two 

nodes u, v ∈ V are adjacent if {u, v} ∈ E.
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Connected Components

● Let G = (V, E) be a graph. For each v ∈ V, the 
connected component containing v is the set

[v] = { x ∈ V | v is connected to x }
● Intuitively, a connected component is a “piece” 

of a graph in the sense we just talked about.
● Question: How do we know that this 

particular defnition of a “piece” of a graph is a 
good one?

● Goal: Prove that any graph can be broken 
apart into diferent connected components.



  

We’re trying to reason about some way of 
partitioning the nodes in a graph into 

diferent groups.

What structure have we studied that 
captures the idea of a partition?



  

Connectivity

● Claim: For any graph G, the “is 
connected to” relation is an equivalence 
relation.
● Is it refexive?
● Is it symmetric?
● Is it transitive?
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Theorem: Let G = (V, E) be a graph. Then the connectivity relation
over V is an equivalence relation.

Proof: Consider an arbitrary graph G = (V, E). We will prove that
the connectivity relation over V is refexive, symmetric, and
transitive.

To show that connectivity is refexive, consider any v ∈ V. Then 
the singleton path v is a path from v to itself. Therefore, v is 
connected to itself, as required.

To show that connectivity is symmetric, consider any x, y ∈ V 
where x is connected to y. We need to show that y is connected 
to x. Since x is connected to y, there is some path x, v₁, …, vₙ, y 
from x to y. Then y, vₙ, …, v₁, x is a path from y back to x, so y is 
connected to x.

Finally, to show that connectivity is transitive, let x, y, z ∈ V be 
arbitrary nodes where x is connected to y and y is connected to 
z. We will prove that x is connected to z. Since x is connected to 
y, there is a path x, u₁, …, uₙ, y from x to y. Since y is connected 
to z, there is a path y, v₁, …, vₖ, z from y to z. Then the path
x, u₁, …, uₙ, y, v₁, …, vₖ, z goes from x to z. Thus x is connected 
to z, as required. ■



  

Putting Things Together

● Earlier, we defned the connected component of 
a node v to be

[v] = { x ∈ V | v is connected to x }
● Connectivity is an equivalence relation! So 

what’s the equivalence class of a node v with 
respect to connectivity?

[v]conn = { x ∈ V | v is connected to x }

● Connected components are equivalence 
classes of the connectivity relation!



  

Theorem: If G = (V, E) is a graph, then every node in G
belongs to exactly one connected component of G.

Proof: Let G = (V, E) be an arbitrary graph and let v ∈ V be
any node in G. The connected components of G are just
the equivalence classes of the connectivity relation in G.
The Fundamental Theorem of Equivalence Relations
guarantees that v belongs to exactly one equivalence
class of the connectivity relation. Therefore, v belongs to
exactly one connected component in G. ■



  

Time-Out for Announcements!



  

Problem Set Three

● The checkpoint problems for PS3 were 
due at 3:00PM today.
● We'll try to have it graded and returned by 

Wednesday morning.
● The remaining problems from PS3 are 

due on Friday at 3:00PM.
● Have questions? Stop by ofice hours or ask 

on Piazza!



  

Back to CS103!
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● Theorem (The Pigeonhole Principle): 
If m objects are distributed into n bins 
and m > n, then at least one bin will 
contain at least two objects.
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m = 4, n = 3



  

Some Simple Applications
● Any group of 367 people must have a pair of 

people that share a birthday.
● 366 possible birthdays (pigeonholes)
● 367 people (pigeons)

● Two people in San Francisco have the exact 
same number of hairs on their head.
● Maximum number of hairs ever found on a 

human head is no greater than 500,000.
● There are over 800,000 people in San Francisco.



  

Proving the Pigeonhole Principle



  

Theorem: If m objects are distributed into n bins and m > n,
then there must be some bin that contains at least two objects.

Proof: Suppose for the sake of contradiction that, for some m and
n where m > n, there is a way to distribute m objects into n
bins such that each bin contains at most one object.

Number the bins 1, 2, 3, …, n and let xᵢ denote the number of 
objects in bin i. There are m objects in total, so we know that

  m = x₁ + x₂ + … + xₙ.

Since each bin has at most one object in it, we know xᵢ ≤ 1 for 
each i. This means that

  m = x₁ + x₂ + … + xₙ
≤ 1  +  1 + … + 1   (n times)
= n.

This means that m ≤ n, contradicting that m > n. We’ve 
reached a contradiction, so our assumption must have been 
wrong. Therefore, if m objects are distributed into n bins with 
m > n, some bin must contain at least two objects. ■



  

Pigeonhole Principle Party Tricks



  



  



  



  

Degrees

● The degree of a node v in a graph is the 
number of nodes that v is adjacent to.

 

● Theorem: Every graph with at least two 
nodes has at least two nodes with the same 
degree.
● Equivalently: at any party with at least two 

people, there are at least two people with the 
same number of friends at the party.
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Theorem: In any graph with at least two nodes, there are
at least two nodes of the same degree.

Proof 1: Let G be a graph with n ≥ 2 nodes. There are n
possible choices for the degrees of nodes in G, namely,
0, 1, 2, …, and n – 1.

We claim that G cannot simultaneously have a node u of 
degree 0 and a node v of degree n – 1: if there were such 
nodes, then node u would be adjacent to no other nodes 
and node v would be adjacent to all other nodes, 
including u. (Note that u and v must be diferent nodes, 
since v has degree at least 1 and u has degree 0.)

We therefore see that the possible options for degrees of 
nodes in G are either drawn from 0, 1, …, n – 2 or from
1, 2, …, n – 1. In either case, there are n nodes and n – 1 
possible degrees, so by the pigeonhole principle two 
nodes in G must have the same degree. ■
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Theorem: In any graph with at least two nodes, there are
at least two nodes of the same degree.

Proof 2: Assume for the sake of contradiction that there
is a graph G with n ≥ 2 nodes where no two nodes
have the same degree. There are n possible choices
for the degrees of nodes in G, namely 0, 1, 2, …, n – 1,
so this means that G must have exactly one node of
each degree. However, this means that G has a node
of degree 0 and a node of degree n – 1. (These can't
be the same node, since n ≥ 2.) This frst node is
adjacent to no other nodes, but this second node is
adjacent to every other node, which is impossible.

We have reached a contradiction, so our assumption 
must have been wrong. Thus if G is a graph with at 
least two nodes, G must have at least two nodes of the 
same degree. ■
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A More General Version
● The generalized pigeonhole principle says 

that if you distribute m objects into n bins, then
● some bin will have at least ⌈m/ₙ⌉ objects in it, and
● some bin will have at most ⌊m/ₙ⌋ objects in it.

⌈m/ₙ⌉ means “m/ₙ, rounded up.”
⌊m/ₙ⌋ means “m/ₙ, rounded down.”

⌈m/ₙ⌉ means “m/ₙ, rounded up.”
⌊m/ₙ⌋ means “m/ₙ, rounded down.”

  m = 11
   n = 5

⌈m / n⌉ = 3
⌊m / n⌋ = 2
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m = 8, n = 3



  

Theorem: If m objects are distributed into n > 0 bins, then some
bin will contain at least ⌈m/ₙ⌉ objects.

Proof: We will prove that if m objects are distributed into n bins, then
some bin contains at least m/ₙ objects. Since the number of objects in
each bin is an integer, this will prove that some bin must contain at
least ⌈m/ₙ⌉ objects.

To do this, we proceed by contradiction. Suppose that, for some m 
and n, there is a way to distribute m objects into n bins such that 
each bin contains fewer than m/ₙ objects.

Number the bins 1, 2, 3, …, n and let xᵢ denote the number of objects 
in bin i. Since there are m objects in total, we know that

  m = x₁  +  x₂  + … + xₙ.

Since each bin contains fewer than m/ₙ objects, we see that
xᵢ < m/ₙ for each i. Therefore, we have that

  m = x₁  +  x₂  + … + xₙ
< m/ₙ + m/ₙ  + … + m/ₙ  (n times)
= m.

But this means that m < m, which is impossible. We have reached a 
contradiction, so our initial assumption must have been wrong. 
Therefore, if m objects are distributed into n bins, some bin must 
contain at least ⌈m/ₙ⌉ objects. ■



  

An Application: Friends and Strangers



  

Friends and Strangers

● Suppose you have a party of six people. 
Each pair of people are either friends 
(they know each other) or strangers (they 
do not).

● Theorem: Any such party must have a 
group of three mutual friends (three 
people who all know one another) or three 
mutual strangers (three people, none of 
whom know any of the others).



  



  



  



  



  



  



  

This graph is 
called a 6-clique, 

by the way.
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Friends and Strangers Restated

● From a graph-theoretic perspective, the 
Theorem on Friends and Strangers can 
be restated as follows:

Theorem: Any 6-clique whose edges are 
colored red and blue contains a red 
triangle or a blue triangle (or both).

● How can we prove this?



  



  



  



  



  



  



  

Observation 1: If 
we pick any node in 
the graph, that node 

will have at least 
⌈5/2⌉ = 3 edges of 

the same color 
incident to it.
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Theorem: Consider a 6-clique in which every edge is colored
either red or blue. Then there must be a triangle of red
edges, a triangle of blue edges, or both.

Proof: Color the edges of the 6-clique either red or blue
arbitrarily. Let x be any node in the 6-clique. It is incident
to fve edges and there are two possible colors for those
edges. Therefore, by the generalized pigeonhole principle,
at least ⌈⁵/₂⌉ = 3 of those edges must be the same color.
Call that color c₁ and let the other color be c₂.

Let r, s, and t be three of the nodes adjacent to node x 
along an edge of color c₁. If any of the edges {r, s}, {r, t}, 
or {s, t} are of color c₁, then one of those edges plus the 
two edges connecting back to node x form a triangle of 
color c₁. Otherwise, all three of those edges are of color 
c₂, and they form a triangle of color c₂. Overall, this gives 
a red triangle or a blue triangle, as required. ■



  

Ramsey Theory

● The proof we did is a special case of a broader 
result.

● Theorem (Ramsey’s Theorem): For any natural 
number n, there is a smallest natural number 
R(n) such that if the edges of an R(n)-clique are 
colored red or blue, the resulting graph will 
contain either a red n-clique or a blue n-clique.
● Our proof was that R(3) ≤ 6.

● A more philosophical take on this theorem: true 
disorder is impossible at a large scale, since no 
matter how you organize things, you’re 
guaranteed to fnd some interesting substructure.



  

A Little Math Puzzle



  

  “In a group of n > 0 people …
 

    · 90% of those people enjoyed Get Out,
  · 80% of those people enjoyed Lady Bird,
  · 70% of those people enjoyed Arrival, and
  · 60% of those people enjoyed Zootopia.

 

  No one enjoyed all four movies. How many people 
  enjoyed at least one of Get Out and Arrival?”

  “In a group of n > 0 people …
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  · 80% of those people enjoyed Lady Bird,
  · 70% of those people enjoyed Arrival, and
  · 60% of those people enjoyed Zootopia.

 

  No one enjoyed all four movies. How many people 
  enjoyed at least one of Get Out and Arrival?”

(Adapted from here.)

https://math.stackexchange.com/questions/2874859/drinking-habits-riddle-the-village-is-90807060-300-saturat


  

Other Pigeonhole-Type Results



  

If m objects are distributed into n 
boxes, then [condition] holds.



  

If m objects are distributed into n 
boxes, then some box is loaded to at 

least the average ᵐ/ₙ, and some box is 
loaded to at most the average ᵐ/ₙ.
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Theorem: If m objects are distributed into 
n bins, then there is a bin containing more 
than ᵐ/ₙ objects if and only if there is a bin 

containing fewer than ᵐ/ₙ objects.



  

Lemma: If m objects are distributed into n bins and there are no bins
containing more than ᵐ/ₙ objects, then there are no bins containing
fewer than ᵐ/ₙ objects.

Proof: Assume for the sake of contradiction that m objects are distributed
into n bins such that no bin contains more than ᵐ/ₙ objects, yet some
bin has fewer than ᵐ/ₙ objects.

For simplicity, denote by xᵢ the number of objects in bin i. Without loss 
of generality, assume that bin 1 has fewer than ᵐ/ₙ objects, meaning 
that x₁ < ᵐ/ₙ. Adding up the number of objects in each bin tells us that

           m =  x₁ + x₂ + x₃ + … + xₙ

    <  ᵐ/ₙ + x₂ + x₃ + … + xₙ

 ≤  ᵐ/ₙ + ᵐ/ₙ + ᵐ/ₙ + … + ᵐ/ₙ.

This third step follows because each remaining bin has at most ᵐ/ₙ 
objects. Grouping the n copies of the ᵐ/ₙ term here tells us that

          m <  ᵐ/ₙ + ᵐ/ₙ + ᵐ/ₙ + … + ᵐ/ₙ

        =  m.

But this means m < m, which is impossible. We’ve reached a 
contradiction, so our assumption was wrong, so if m objects are 
distributed into n bins and no bin has more than ᵐ/ₙ objects, no bin has 
fewer than ᵐ/ₙ objects either. ■
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This magic phrase means “we get to 
pick how we’re labeling things anyway, 

so if it doesn’t work out, just 
relabel things.”
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  “In a group of n > 0 people …
 

    · 90% of those people enjoyed Get Out,
  · 80% of those people enjoyed Lady Bird,
  · 70% of those people enjoyed Arrival, and
  · 60% of those people enjoyed Zootopia.

 

  No one enjoyed all four movies. How many people 
  enjoyed at least one of Get Out and Arrival?”
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Theorem: In the scenario described here, all n people enjoyed at least
one of Get Out and Arrival.

Proof: Suppose there is a group of n people meeting these criteria. We 
can model this problem by representing each person as a bin and
each time a person enjoys a movie as a ball. The number of balls is

.9n + .8n + .7n + .6n = 3n,

and since there are n people, there are n bins. Since no person liked 
all four movies, no bin contains more than 3 = ³ⁿ/ₙ balls, so by our 
earlier theorem we see that no bin contains fewer than three balls. 
Therefore, each bin contains exactly three balls.

Now suppose for the sake of contradiction that someone didn’t enjoy 
Get Out and didn’t enjoy Arrival. This means they could enjoy at most 
two of the four movies, contradicting that each person enjoys exactly 
three.

We’ve reached a
contradiction, so our
assumption was
wrong and each
person enjoyed at
least one of Get Out
and Arrival. ■
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Now suppose for the sake of contradiction that someone didn’t enjoy 
Get Out and didn’t enjoy Arrival. This means they could enjoy at most 
two of the four movies, contradicting that each person enjoys exactly 
three.

We’ve reached a
contradiction, so our
assumption was
wrong and each
person enjoyed at
least one of Get Out
and Arrival. ■

  “In a group of n > 0 people …
 

    · 90% of those people enjoyed Get Out,
  · 80% of those people enjoyed Lady Bird,
  · 70% of those people enjoyed Arrival, and
  · 60% of those people enjoyed Zootopia.

 

  No one enjoyed all four movies. How many people 
  enjoyed at least one of Get Out and Arrival?”

  “In a group of n > 0 people …
 

    · 90% of those people enjoyed Get Out,
  · 80% of those people enjoyed Lady Bird,
  · 70% of those people enjoyed Arrival, and
  · 60% of those people enjoyed Zootopia.

 

  No one enjoyed all four movies. How many people 
  enjoyed at least one of Get Out and Arrival?”



  

Going Further

● The pigeonhole principle can be used to prove a ton of 
amazing theorems. Here’s a sampler:
● There is always a way to fairly split rent among multiple people, 

even if diferent people want diferent rooms. (Sperner’s lemma)
● You and a friend can climb any mountain from two diferent 

starting points so that the two of you maintain the same altitude 
at each point in time. (Mountain-climbing theorem)

● If you model cofee in a cup as a collection of infnitely many 
points and then stir the cofee, some point is always where it 
initially started. (Brower’s fxed-point theorem)

● A complex process that doesn’t parallelize well must contain a 
large serial subprocess. (Mirksy’s theorem)

● Any positive integer n has a nonzero multiple that can be written 
purely using the digits 1 and 0. (Doesn’t have a name, but still 
cool!)
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