
Self-Assignment: Graph Theory

2024

1 Introduction

Graph Theory is a fundamental area of mathematics with applications in computer sci-
ence, network analysis, optimization, and more. This document will cover essential topics
including Graphs, Trees, and Networks, along with examples and key algorithms. This
document is math-based and won’t cover Prim’s or Kruskal’s algorithms.

2 Graphs

A graph G is an ordered pair (V,E), where V is a set of vertices (or nodes) and E is a
set of edges (or links) connecting pairs of vertices.

2.1 Types of Graphs

• Undirected Graph: In an undirected graph, edges have no direction. The edge
(u, v) is identical to (v, u). This means if there is an edge between u and v, the
direction does not matter.

A B

C

• Directed Graph (Digraph): In a directed graph, edges have a direction. An
edge (u, v) indicates a directed connection from u to v and is not the same as (v, u).
This can model scenarios where direction matters, like traffic flows.

A B

C

• Weighted Graph: In a weighted graph, each edge has a weight or cost associated
with it. The weight w(u, v) represents the cost or distance between vertices u and
v. Weighted graphs are useful for finding the shortest path or minimum cost.

1

A B

C

4

2 3

• Unweighted Graph: An unweighted graph has edges that do not carry any weight.
All edges are considered equal, which simplifies the graph but may not be useful
for applications requiring edge weights.

A B

C

• Simple Graph: A simple graph has no loops (edges connecting a vertex to itself)
and no multiple edges between the same pair of vertices. It is the most basic form
of a graph.

A B

C

• Multi graph: A multi graph can have multiple edges between the same pair
of vertices. This allows for modeling scenarios where multiple connections exist
between two nodes, such as different types of relationships.

A B

• Complete Graph: A complete graph is one in which there is a unique edge
connecting every pair of vertices. Each vertex is connected to every other vertex.

A B

C

2.2 Graph Representations

• Adjacency Matrix: A |V | × |V | matrix where the entry at row i and column j
indicates the presence (and weight) of an edge between vertices i and j.

• Adjacency List: A list where each vertex has a list of adjacent vertices. This
representation is more space-efficient for sparse graphs.

• Incidence Matrix: A |V | × |E| matrix where the entry at row i and column j
indicates whether vertex i is incident to edge j.

2

2.3 Example

Consider the following undirected graph G:

G = (V,E)

where V = {A,B,C,D} and E = {(A,B), (B,C), (C,D), (D,A), (A,C)}.
The adjacency matrix for this graph is:

0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

3 Trees

A tree is a connected acyclic graph. Trees are a special type of graph with unique
properties.

3.1 Properties of Trees

• A tree with n vertices has exactly n− 1 edges.

• Any two vertices are connected by exactly one path.

• Adding an edge between any two vertices of a tree creates exactly one cycle.

3.2 Example

Consider the following tree:
T = (V,E)

where V = {A,B,C,D} and E = {(A,B), (A,C), (B,D)}.

4 Networks

A network is a graph with weights on its edges, often used to model flow problems or
optimization problems.

4.1 Example

Consider a network where each edge represents a capacity. The capacities between nodes
are given by the following matrix:

− 1 2
1 − 4
2 3 −
− − −

3

5 Algorithms

5.1 Dijkstra’s Algorithm

Dijkstra’s algorithm finds the shortest paths from a source vertex to all other vertices in
a weighted graph with non-negative weights.

5.1.1 Algorithm Description

1. Initialize the distance to the source vertex s to 0 and to all other vertices to infinity
(∞). 2. Create a priority queue and insert the source vertex with distance 0. 3. While
the priority queue is not empty:

• Extract the vertex u with the minimum distance.

• For each adjacent vertex v of u, if the distance to v through u is less than the
current known distance, update the distance and insert v into the priority queue.

4. Repeat until all vertices have been processed.

5.1.2 Mathematical Representation

Let G = (V,E) be a graph where V is the set of vertices and E is the set of edges. Each
edge (u, v) ∈ E has a non-negative weight w(u, v). Define d(u) as the shortest distance
from the source vertex s to vertex u. Initially, d(s) = 0 and d(v) = ∞ for all v ̸= s.

The algorithm iteratively updates d(u) using the relaxation step:

d(v) = min(d(v), d(u) + w(u, v))

5.1.3 Example

Consider a graph with vertices {A,B,C,D} and edges with weights:

Edge A B C D
A → B 1 − − −
A → C 4 − − −
B → C 2 1 − −
B → D 5 − − 1
C → D 1 − − −

Starting from vertex A, Dijkstra’s algorithm will compute the shortest paths to all other
vertices.

5.2 Bellman-Ford Algorithm

The Bellman-Ford algorithm finds the shortest paths from a source vertex to all other
vertices in a weighted graph, and it can handle negative weights.

4

5.2.1 Algorithm Description

1. Initialize the distance to the source vertex s to 0 and to all other vertices to infinity
(∞). 2. For |V | − 1 iterations:

• For each edge (u, v) with weight w(u, v), if d(u) + w(u, v) < d(v), update d(v) =
d(u) + w(u, v).

3. Check for negative-weight cycles:

• For each edge (u, v) with weight w(u, v), if d(u)+w(u, v) < d(v), a negative-weight
cycle exists.

5.2.2 Mathematical Representation

Let G = (V,E) be a graph where V is the set of vertices and E is the set of edges. Each
edge (u, v) ∈ E has a weight w(u, v). Define d(u) as the shortest distance from the source
vertex s to vertex u. Initially, d(s) = 0 and d(v) = ∞ for all v ̸= s.

For |V | − 1 iterations, update the distances:

d(v) = min(d(v), d(u) + w(u, v))

After |V | − 1 iterations, if any distance can still be updated, the graph contains a
negative-weight cycle.

5.2.3 Example

Consider a graph with vertices {A,B,C} and edges with weights:

Edge A B C
A → B 1 − −
B → C 2 1 −
C → A −1 − −

Starting from vertex A, the Bellman-Ford algorithm will compute the shortest paths and
detect any negative-weight cycles if they exist.

6 References

• None

5

	Introduction
	Graphs
	Types of Graphs
	Graph Representations
	Example

	Trees
	Properties of Trees
	Example

	Networks
	Example

	Algorithms
	Dijkstra’s Algorithm
	Algorithm Description
	Mathematical Representation
	Example

	Bellman-Ford Algorithm
	Algorithm Description
	Mathematical Representation
	Example

	References

