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1 Introduction

Graph Theory is a fundamental area of mathematics with applications in computer sci-
ence, network analysis, optimization, and more. This document will cover essential topics
including Graphs, Trees, and Networks, along with examples and key algorithms. This
document is math-based and won’t cover Prim’s or Kruskal’s algorithms.

2 Graphs

A graph G is an ordered pair (V, E), where V' is a set of vertices (or nodes) and E is a
set of edges (or links) connecting pairs of vertices.

2.1 Types of Graphs

e Undirected Graph: In an undirected graph, edges have no direction. The edge
(u,v) is identical to (v,u). This means if there is an edge between u and v, the
direction does not matter.
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e Directed Graph (Digraph): In a directed graph, edges have a direction. An
edge (u,v) indicates a directed connection from u to v and is not the same as (v, u).
This can model scenarios where direction matters, like traffic flows.
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e Weighted Graph: In a weighted graph, each edge has a weight or cost associated
with it. The weight w(u, v) represents the cost or distance between vertices u and
v. Weighted graphs are useful for finding the shortest path or minimum cost.
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e Unweighted Graph: An unweighted graph has edges that do not carry any weight.

2.2

All edges are considered equal, which simplifies the graph but may not be useful
for applications requiring edge weights.
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Simple Graph: A simple graph has no loops (edges connecting a vertex to itself)
and no multiple edges between the same pair of vertices. It is the most basic form
of a graph.
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Multi graph: A multi graph can have multiple edges between the same pair
of vertices. This allows for modeling scenarios where multiple connections exist
between two nodes, such as different types of relationships.
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Complete Graph: A complete graph is one in which there is a unique edge
connecting every pair of vertices. Each vertex is connected to every other vertex.
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Graph Representations

Adjacency Matrix: A |V| x |V| matrix where the entry at row i and column j
indicates the presence (and weight) of an edge between vertices ¢ and j.

Adjacency List: A list where each vertex has a list of adjacent vertices. This
representation is more space-efficient for sparse graphs.

Incidence Matrix: A |V| x |E| matrix where the entry at row ¢ and column j
indicates whether vertex ¢ is incident to edge j.



2.3 Example
Consider the following undirected graph G-

G=(V,E)

where V = {A, B,C, D} and FE = {(A, B),(B,C),(C,D),(D,A),(A,C)}.
The adjacency matrix for this graph is:
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3 Trees

A tree is a connected acyclic graph. Trees are a special type of graph with unique
properties.

3.1 Properties of Trees

e A tree with n vertices has exactly n — 1 edges.
e Any two vertices are connected by exactly one path.

e Adding an edge between any two vertices of a tree creates exactly one cycle.

3.2 Example

Consider the following tree:

T = (V,E)
where V = {A, B,C, D} and E = {(A, B), (A, C), (B, D)}.

4 Networks

A network is a graph with weights on its edges, often used to model flow problems or
optimization problems.

4.1 Example

Consider a network where each edge represents a capacity. The capacities between nodes
are given by the following matrix:
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5 Algorithms

5.1 Dijkstra’s Algorithm

Dijkstra’s algorithm finds the shortest paths from a source vertex to all other vertices in
a weighted graph with non-negative weights.

5.1.1 Algorithm Description

1. Initialize the distance to the source vertex s to 0 and to all other vertices to infinity
(00). 2. Create a priority queue and insert the source vertex with distance 0. 3. While
the priority queue is not empty:

o Extract the vertex u with the minimum distance.

e For each adjacent vertex v of wu, if the distance to v through u is less than the
current known distance, update the distance and insert v into the priority queue.

4. Repeat until all vertices have been processed.

5.1.2 Mathematical Representation

Let G = (V, E) be a graph where V' is the set of vertices and E is the set of edges. Each
edge (u,v) € E has a non-negative weight w(u,v). Define d(u) as the shortest distance
from the source vertex s to vertex u. Initially, d(s) = 0 and d(v) = oo for all v # s.

The algorithm iteratively updates d(u) using the relaxation step:

d(v) = min(d(v), d(u) + w(u,v))

5.1.3 Example
Consider a graph with vertices {A, B, C, D} and edges with weights:

Edge |A B C D
A— B
A—=C
B—C
B— D
C—D
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Starting from vertex A, Dijkstra’s algorithm will compute the shortest paths to all other
vertices.

5.2 Bellman-Ford Algorithm

The Bellman-Ford algorithm finds the shortest paths from a source vertex to all other
vertices in a weighted graph, and it can handle negative weights.



5.2.1 Algorithm Description

1. Initialize the distance to the source vertex s to 0 and to all other vertices to infinity
(00). 2. For |V| —1 iterations:

e For each edge (u,v) with weight w(u,v), if d(u) + w(u,v) < d(v), update d(v) =
d(u) + w(u,v).

3. Check for negative-weight cycles:
e For each edge (u,v) with weight w(u,v), if d(u) + w(u,v) < d(v), a negative-weight

cycle exists.

5.2.2 Mathematical Representation

Let G = (V, E) be a graph where V' is the set of vertices and F is the set of edges. Each
edge (u,v) € F has a weight w(u,v). Define d(u) as the shortest distance from the source
vertex s to vertex u. Initially, d(s) = 0 and d(v) = oo for all v # s.

For |V| — 1 iterations, update the distances:

d(v) = min(d(v), d(u) + w(u,v))

After |V| — 1 iterations, if any distance can still be updated, the graph contains a
negative-weight cycle.

5.2.3 Example

Consider a graph with vertices {A, B, C'} and edges with weights:

Edge‘A B C

A—-B| 1 — —
B—-C|] 2 1 -
C—-A|-1 — —

Starting from vertex A, the Bellman-Ford algorithm will compute the shortest paths and
detect any negative-weight cycles if they exist.
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