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SECTION A 
 
Candidates should answer the TEN Multiple Choice Questions (MCQs) quiz, Question 1 
in Section A on the VLE.  
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Question 1

(a) List the elements of the following sets:

i. {x|x ∈ Z ∧ (x 2= 6)}

ii. {x|x ∈ Z ∧ (x 2= 9)}

iii. {x|x ∈ N ∧ (x mod 2 = 1) ∧ (x < 10)} [3]

(b) Let A and B be two sets such that |A| = |B| = n and |A ∩ B| = 1. Find

 i. |A ∪ B|
ii. P(A ∪ B) | |

where n is a positive integer and 
S. Show your working.

P(S) represents the power set of a set

(c) Prove the following set identities, using either Venn Diagrams or the rules
 of sets. Show your working.

i. (A ∩ B) ∪ (A ∩ B) = A

ii. (A − B) − C A − C ⊆
iii. (A − C) ∩ (C − B) = ∅ [6]

[3]

(d) Let p, q and r be three propositions for which p and q are true, and r is
 false. Determine the truth value of for each of the following:

i. p → (r → q)

ii. (p ⊕ r) → ¬q

iii. p ∧ (r → q)

Candidates should answer any TWO questions from Section B.

SECTION B

[4]
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What are the truth values for each of the following:

   

ii. ∃x∃y(x + y = 0) ∨ (x ∗ y = 0)

iii. ∀x∀y(x ∗ y ≥ x + y)

         

 

  

  

             
    

                 ⊆ C
and x ∈ B, then x ∈/ A − C. [4]

              
             
              

[4]

             

(f) Re-write the following statements without any negations on quantifiers:

 

i. ∃x∀y(x ≤ y)

¬∃xP (x)

  ¬∃x¬∃yP (x, y)

  ¬∃x∀yP (x, y)iii.

ii.

i.

             
    

i. Let A, B and C be three sets. Prove by contradiction that if A ∩ B

ii.   Suppose that I want to purchase a tablet computer. I can choose either a
 large or a small screen; a 64GB, 128GB, or 256GB storage capacity, and

 a black, white, gold, or silver cover. How many different options do I have?

[3]

[3]

(g) Decide whether the following arguments are valid or not. State the Rule of
 Inference or fallacy used.
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         (e) The universe of discourse is the set of all positive integers, Z^+.



Question 2

(a) Minimise the following logic function using the Karnaugh maps method:

f(a, b, c) = a′b+ bc′ + bc+ ab′c′

[6]

(b) Given the following logical circuit with three inputs A,B and C:

[4]

ii. Simplify the logical expression in (i). Explain your answer. [5]

(c) Let f be a function R− {−3} → R− {1} with f(x) = x
x+3

.

i. Show that f is a bijective function [4]

ii. Find the inverse function f−1 [2]

iii. Plot the curves of both function f and f−1 on the same graph. [2]

iv. suppose we change the co-domain of the function f to be R:

f : R− {−3} → R

v. Is f still a bijective function? Explain your answer. [3]

(d) How many binary sequences of length 8 start with a 1 and end with a 0? [4]

i. Use the boolean algebra notation and write down the boolean expression of the
 output, Q of this circuit.
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Question 3

[3]

(b) Find the maximum number of comparisons to be made to find any record in a
binary search tree which holds 3000 records.

[6]

Use Dijkstra’s algorithm to find the shortest path from A to I. Show your working.

(a) Explain the difference between an Euler path and an Euler cycle.

        
              

                   
          

        

(d) The figure shows a network of cycle tracks. The number on each edge represents
   the length, in miles, of that track. Jay wishes to cycle from A to I as part of a
   cycling holiday. She wishes to minimise the distance she travels.

[3]

(c) Explain what is meant by the term ‘path’.
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∀x, y ∈ S, xRy ⇐⇒ x mod 2 = y mod 2

i. Draw the digraph of R. [2]

ii. Show that R is an equivalence relation.

iii. Find the equivalence classes for R
item is R a partial order? Explain your answer

END OF PAPER

(e) Given S is the set of integers {2, 3, 4, 5, 6, 7, 8}. Let R be a relation defined on S
 by the following condition such that,

(f) Letf : A → B and g : B → C be functions. Prove that if g o f is one-to-one ,
 then f is one-to-one.

[6]

[2]

[2]

[6]
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