CALCULUS EXERCISES 5 — Further Differential Equations

1. Find all solutions of the following separable differential equations:
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2. Use the method of integrating factors to solve the following equations with initial conditions
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3. Find the most general solution of the following inhomogeneous constant coefficient differential equations:
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4. (a) By making the substitution y () = zv (z) in the following homogeneous polar equations, convert them into
separable differential equations involving v and x, which you should then solve
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(b) Make substitutions of the form 2 = X 4+ a, y =Y + b, to turn the differential equation
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into a homogeneous polar differential equation in X and Y. Hence find the general solution of the above equation.
5. A particle P moves in the zy-plane. Its co-ordinates z (¢) and y (¢) satisfy the equations
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and at time ¢ = 0 the particle is at (1,0). Find, and solve, a homogeneous polar equation relating = and y.

By changing to polar co-ordinates (r2 =22 4+ ¢?, tanf = y/x) , sketch the particle’s journey for ¢ > 0.



