MA1102R AY20/21 sem 2 github.com/jovyntls

00. FUNCTIONS & SETS

sets

 $A = \{x \mid properties \ of x\}$

- $A \subseteq B$: A is a subset of B
- $A \nsubseteq B$: A is not a subset of B • $A = B \iff A \subseteq B \land B \subseteq A$
- $A = D \iff A \subseteq D \land D \subseteq$ • operations on sets
- union: $A \cup B = \{x \mid x \in A \lor x \in B\}$
- intersection: $A \cap B = \{x \mid x \in A \land x \in B\}$
- difference: $A \setminus B = \{x \mid x \in A \land x \notin B\}$
- common notations on sets:
 ℝ, ℚ, ℤ, ℕ where ℕ = ℤ⁺

• Ø: empty set

closed interval (inclusive): $[a,b] = \{x \mid a \le x \le b\}$ $(a,b) = \{x \mid a < x < b\}$ $(a,b) = \{x \mid a < x < b\}$ $(a,\infty) = \{x \mid a < x\}$

functions

- existence: $\forall a \in A, f(a) \in B$
- **uniqueness**: $\forall a \in A$ has only one image in B.
- for $f:A \to B$
- domain: A, codomain: B
- range: $\{f(x) \mid x \in A\}$
- for this mod:
 - $A, B \subseteq \mathbb{R}$
 - if A is not stated, the domain of f is the largest possible set for which f is defined

• if B is not stated, $B = \mathbb{R}$

graphs of functions

The graph of
$$f$$
 is the set
 $G(f) := \{(x, f(x)) \mid x \in A\}$

• if $A, B \subseteq R$ then $G(f) \subseteq A \times B \subseteq \mathbb{R} \times \mathbb{R}$

- each element is a point on the Cartesian plane \mathbb{R}^2

algebra of functions

function	domain
(f+g)(x) := f(x) + g(x)	$A \cap B$
(f-g)(x) := f(x) - g(x)	$A \cap B$
(fg)(x) := f(x)g(x)	$A \cap B$
(f/g)(x) := f(x)/g(x)	$\{x \in A \cap B g(x) \neq 0\}$

types of functions

- rational function: $R(x)=\frac{P(x)}{Q(x)},$ where P,Q are polynomials and $Q(x)\neq 0$

- every polynomial is a rational function (Q(x) = 1)• algebraic function: constructed from polynomials using algebraic operations
- a function f is **increasing** on a set I if $x_q < x_2 \Rightarrow f(x_1) < f(x_2)$ for any $x_1, x_2 \in I$. • a function f is **decreasing** on a set I if

$$x_q < x_2 \Rightarrow f(x_1) > f(x_2)$$
 for any $x_1, x_2 \in I$.
• even/odd:

• even function: $\forall x, f(-x) = f(x)$

• symmetric about the *y*-axis • odd function: $\forall x, f(-x) = -f(x)$

symmetric about the origin O
 any function defined on R can be decomposed *uniquely* into the sum of an even function and an odd function
 power function: xⁿ

• x^n is $\begin{cases} an odd function, & \text{if } n \text{ is odd} \\ an even function, & \text{if } n \text{ is even} \end{cases}$

01. LIMITS

precise definition of limits

Let f be a function defined on an open interval containing $a, \\ \text{except possibly at } a.$

informally,

• $0 < |x - a| < \delta \Rightarrow x$ is close to but not equal to *a*. • $0 < |f(x) - L| < \epsilon \Rightarrow f(x)$ is arbitrarily close to *L*.

limit laws

you cannot apply any laws on limits UNLESS you have shown that the limit exists! • Let $c \in \mathbb{R}$. $\lim_{x \to a} c = c$ • $\lim_{x \to a} x = a$ Suppose $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$. Let c be a constant. • $\lim_{x \to a} (cf(x)) = cL = c \lim_{x \to a} f(x)$ • $\lim_{x \to a} (f(x) + g(x)) = L + M = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$ • $\lim_{x \to a} (f(x) - g(x)) = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$ • $\lim_{x \to a} (f(x)g(x)) = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$ • $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$ provided that $\lim_{x \to a} g(x) \neq 0$ • $\lim_{x \to a} (f(x))^n = (\lim_{x \to a} f(x))^n$ • $\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$

direct substitution property

Let f be a polynomial or rational function.

If
$$a$$
 is in the domain of f , then

$$\lim_{x \to a} f(x) = f(a)$$
If $f(x) = g(x)$ for all x near a except possibly at a , then

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$$

If *a* is not in the domain (e.g. 0 denominator), don't apply directly - convert to an equivalent function and then sub in

inequalities on limits

Suppose $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$.

 $\label{eq:gamma} \begin{array}{l} \mbox{lemma} \\ \mbox{if } f(x) \leq g(x) \mbox{ for all } x \mbox{ near } a \mbox{ (except possibly at } a), \\ \mbox{ then } L \leq M. \\ \mbox{ lemma} \\ \mbox{ lf } f(x) \geq 0 \mbox{ for all } x, \mbox{ then } L \geq 0. \end{array}$

one-sided limits

limit laws also hold for one-sided limits

$$\lim_{x \to a} f(x) = L \iff \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = L$$
$$f(x) \to L \Leftarrow x \to a \Leftrightarrow \begin{cases} x \to a^+ \Rightarrow f(x) \to L\\ x \to a^- \Rightarrow f(x) \to L \end{cases}$$

definition of one-sided limits

LH Limit: $\lim_{x \to a^{-}} f(x) = L$ if for every $\epsilon > 0$ there exists $\delta > 0$ such that $0 < a - x < \delta \Rightarrow |f(x) - L| < \epsilon$

 $\begin{array}{l} \text{RH Limit: } \lim_{x \to a^+} f(x) = L \\ \text{if for every } \epsilon > 0 \text{ there exists } \delta > 0 \text{ such that} \\ 0 < x - a < \delta \Rightarrow |f(x) - L| < \epsilon \end{array}$

definition of infinite limits ($\lim f(x) = \infty$) $\lim_{x \to a} f(x) = \infty$ if for every M > 0 there exists $\delta > 0$ such that $0 < |x - a| < \delta \Rightarrow f(x) > M$

 $0 < |x - a| < \delta \Rightarrow f(x) < M$

• ∞ is NOT a number \Rightarrow an infinite limit does NOT exist

limits to infinity ($\lim_{x \to \infty}$)

Suppose f is defined on $[M,\infty)$ for some $M\in\mathbb{R}:$

$$\begin{split} \lim_{x\to\infty} f(x) &= L:\\ \text{For every } \epsilon > 0, \text{ there exists } N \text{ such that}\\ x > N \Rightarrow |f(x) - L| < \epsilon \end{split}$$

 $\lim_{x\to\infty}f(x)=\infty{:}$ For every M>0, there exists N such that $x>N\Rightarrow f(x)>M$

squeeze theorem

Suppose f(x) is bounded by g(x) and h(x) where • $g(x) \le f(x) \le h(x)$ for all x near a (except at a), and • $\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L.$

02. CONTINUOUS FUNCTIONS

definition of continuity

a function f is **continuous at** $a \iff$ f is continuous from the left and from the right at a. $\lim_{x \to a} f(x) = \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = f(a)$

a function f is **continuous at an interval** if it is continuous at every number in the interval.

 $f \text{ is continuous on open interval } (a, b) \\ \Leftrightarrow f \text{ is continuous at every } x \in (a, b) \\ f \text{ is continuous on closed interval } [a, b] \\ \Leftrightarrow \begin{cases} f \text{ is continuous at every } x \in (a, b) \\ f \text{ is continuous from the right at } a \\ f \text{ is continuous from the left at } b \end{cases}$

precise definition of continuity

a function f is **continuous** at a number a if for all $\epsilon > 0$, there exists $\delta > 0$ such that $|x - a| < \delta \Rightarrow |f(x) - f(a)| < \epsilon$

• aka $\lim_{x \to a} f(x) = f(a)$

continuity test

f is continuous at $a \Leftrightarrow$

2.
$$\lim_{x \to a} f(x)$$
 exists

3.
$$\lim_{x \to a} f(x) = f(a)$$

examples of discontinuity

properties of continuous functions

let f and g be functions continuous at a. let c be a constant.

- 1. *cf* is continuous at *a*
- 2. f + q is continuous at q
- 3. f q is continuous at a
- 4. f q is continuous at a
- 5. f/q is continuous at a, provided $q(a) \neq 0$

other properties

- · a polynomial is continuous everywhere
- · a rational function is continuous on its domain • if P(x) and Q(x) are polynomials, $\frac{P(x)}{Q(x)}$ is continuous

```
whenever Q(x) \neq 0.
```

```
• f(x) = c is continuous on \mathbb{R} for all c \in \mathbb{R}.
```

• f(x) = x is continuous on \mathbb{R} .

trigonometric functions

• $f(x) = \sin x$ and $q(x) = \cos x$ are continuous everywhere

$$\tan x, \sec x$$
 are continuous whenever $\cos x \neq$
• domain: $\mathbb{R} \setminus \{\pm \frac{pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}, \dots \}$

```
• \cot x, \csc x are continuous whenever \sin x \neq 0
    • domain: \mathbb{R} \setminus \{0, \pm \pi, \pm 2\pi, \cdots\}
```

composite of continuous functions

if f is continuous at b and
$$\lim_{x \to a} g(x) = b$$
, then
$$\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x)) = f(b)$$

if q is continuous at a and f is continuous at q(a). then $f \circ q$ is continuous at a.

> $\lim (f \circ g)(x) = (f \circ g)(a)$ $x \rightarrow a$

substitution theorem

- Suppose y = f(x) such that $\lim_{x \to a} f(x) = b$. If
- 1. q is continuous at b, OR
- 2. $\lim_{x \to 0} g(y)$ exists and f is one-to-one.
 - $\forall x \text{ near } a, \text{ except at } a, f(x) \neq b \text{ and } \lim q(y) \text{ exists}$

Then $\lim_{x\to a}g(f(x))=\lim_{y\to b}g(y)$

intermediate value theorem

Let f be a function continuous on [a, b] with $f(a) \neq f(b)$. Let N be a number between f(a) and f(b). Then there exists $c \in (a, b)$ such that f(c) = N. f(b)N f(a)

03. DERIVATIVES

0

definition of derivatives

• f is differentiable at a if f'(a) exists • f'(a) is the slope of y = f(x) at x = a• $f'(a) = \frac{dy}{dx}|_{x=a}$ • $\frac{dy}{dx} := \lim_{x \to 0} \frac{\Delta y}{\Delta x}$ (derivative of y with respect to x) • $f'(x) = y' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx}f(x) = D_x f(x) = \cdots$ the **derivative** of a function *f*

 $f'(x) := \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ the **derivative** of a function f at a number a is $f'(a) := \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$

tangent line

the **tangent line** to y = f(x) at (a, f(a)) is the line passing through (a, f(a)) with slope f'(a): y = f'(a)(x - a) + f(a)

differentiable functions

- f is differentiable at a if
 - $f'(a) := \lim_{x \to 0} \frac{f(a+h) f(a)}{h}$ exists.
- f is differentiable on (a, b) if • f is differentiable at every $c \in (a, b)$

differentiability & continuity

• differentiability \Rightarrow continuity

• if f is differentiable at a, then f is continuous at a. continuity ⇒ differentiability

differentiability

- · every polynomial and rational function is differentiable on its domain
- the domain of f' may be smaller than the domain of f. · trigonometric functions are differentiable on the domain

differentiation

differentiation of trigonometric functions

chain rule

If *q* is differentiable at *a* and *f* is differentiable at b = q(a), then $F = f \circ q$ is differentiable at a and $F'(a) = (f \circ g)'(a) = f'(b)g'(a) = f'(g(a))g'(a)$ If z = f(y) and y = g(x), then $\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx}$ $\frac{dz}{dx}|_{x=a} = \frac{dz}{du}|_{y=b}\frac{dy}{dx}|_{x=a}$

deneralised chain rule

h is differentiable at a; q is differentiable at B = h(a); f is differentiable at c = q(b).

$$\begin{aligned} (f \circ (g \circ h))' &= f' \circ (g \circ h) \cdot (g \circ h)' \\ &= f'(c)g'(b)h'(a) \end{aligned}$$

Leibniz notation: If y = h(x), z = g(y), w = f(z), $\frac{dw}{dx} = \frac{dw}{dz}\frac{dz}{dy}\frac{dy}{dx}$

implicit differentiation

• assumes that $\frac{dy}{dx}$ exists

second derivative

$$f''(x) = \frac{d}{dx}(\frac{dy}{dx}) = \frac{d^2y}{dx^2}$$

$$f' = D(f) \Rightarrow f'' := D^2(f)$$

higher derivatives

$$\begin{split} f^{(0)} &:= f \\ \text{For any positive integer } n, \, f^{(n)} &:= (f^{(n-1)})' \\ \text{if } y &= f(x), \text{ then } f^{(n)}(x) = y^{(n)} = \frac{d^n y}{dx^n} = D^n f(x) \\ \bullet \text{ for } f(x) &= \frac{1}{x}, \, f^{(n)}(x) = \frac{(-1)^n n!}{x^{n+1}} \end{split}$$

for
$$f(x) = x^m$$
, $f^{(n)}(x) = \begin{cases} \frac{m!x^m - n}{(m-n)!} & \text{if } m \ge n, \\ 0 & \text{if } m < n. \end{cases}$
04. APPLICATIONS OF

DIFFERENTIATION

extreme values of functions

- Let f be a function with domain D.
- local max/min ⇒ global max/min
- global max/min ⇒ local max/min

global (absolute) max/min

aka extreme values

f has a global **maximum** at $c \in D$ $\Leftrightarrow f(c) > f(x)$ for all $x \in D$ f has a global **minimum** at $c \in D$ $\Leftrightarrow f(c) \leq f(x)$ for all $x \in D$

local (relative) max/min

- aka "turning points"
- "all x near c" = for all x in an open interval containing c

f has a local **maximum** at $c \in D$ $\Leftrightarrow f(c) > f(x)$ for all x near c f has a local **minimum** at $c \in D$ $\Leftrightarrow f(c) \leq f(x)$ for all x near c

extreme value theorem

existence

if f is continuous on a finite closed interval [a, b], then f attains extreme values on [a, b]. value the extreme value occurs at either critical numbers or the endpoints (x = a, x = b).

critical numbers

 $c \in D$ is a critical number of f if f'(c) = 0, or f'(c) does not exist.

fermat's theorem

If f has a local maximum or minimum at c, then 1. c is a critical number. 2. If f'(c) exists, then f'(c) = 0.

Rolle's Theorem

Let *f* be a function such that *f* is *continuous* on [a, b], *f* is differentiable on (a, b), and f(a) = f(b). Then there is a number $c \in (a, b)$ such that f'(c) = 0.

mean value theorem

• generalisation of Rolle's theorem when f(a) = f(b).

ordinary differential equations

Let f and q be continuous on [a, b]. If f'(x) = q'(x) for all $x \in (a, b)$, then f(x) = g(x) + C on [a, b] for a constant C.

increasing/decreasing test

Let *f* be continuous on [a, b] and differentiable on (a, b). • f'(x) > 0 for any $x \in (a, b) \Rightarrow f$ is increasing. • f is increasing $\Rightarrow f'(x) \ge 0$ on (a, b)• f'(x) < 0 for any $x \in (a, b) \Rightarrow f$ is decreasing. • f is decreasing $\Rightarrow f'(x) < 0$ on (a, b)• $f'(x) = 0 \Rightarrow f$ could be increasing OR decreasing.

 $\lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta} = 0$

first derivative test

Let f be continuous and c be a critical number of f. Suppose f is differentiable near c (except possibly at c). At c, if f' changes from:

- (+) to (-) $\Rightarrow f$ has a local **maximum** at c
- (-) to (+) $\Rightarrow f$ has a local **minimum** at c
- no change in sign $\Rightarrow f$ has neither local max/min at c.

f is **concave up** on an open interval $I \Leftrightarrow f'$ is increasing \Leftrightarrow for $a < b \in I$, f'(a) < f'(b) $\Leftrightarrow f(x) > f'(y)(x-y) + f(y)$ for any $x \neq y \in I$

concavity test

- $f^{\prime\prime}>0$ on $I\Rightarrow f$ is concave up on I
- $f^{\prime\prime} < 0$ on $I \Rightarrow f$ is concave down on I

second derivative test

- If f'(c) = 0 and f''(c) exists,
- $f''(c) < 0 \Rightarrow f$ has a local maximum at c.
- $f''(c) > 0 \Rightarrow f$ has a local minimum at c.
- $f''(c) = 0 \Rightarrow$ inconclusive

inflection point

- A point P on the curve y = f(x) is an inflection point if
- f is continuous at P, and
- the concavity of the curve changes at P.
- if c is an inflection point and f is twice differentiable at c, then f''(c) = 0.

Taylor's Theorem

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_n,$$

where $R_n = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{(n+1)}$ for c between x and a

Taylor Series

As
$$R_n \to 0$$
 as $n \to \infty$, then

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)$$

L'Hopital's Rule

Let f and g be functions such that • $(\frac{0}{0}) \lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$, OR $(\frac{\infty}{\infty}) \lim_{x \to a} |f(x)| = \lim_{x \to a} |g(x)| = \infty$, • f and g are differentiable near a (except at a), • g'(x) $\neq 0$ near a (except at a). Then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$ provided that the RHS limit exists or is $\pm \infty$ **Cauchy's Mean Value Theorem** Let f, g be continuous on [a, b], differentiable on (a, b), and $g'(x) \neq 0$ for any $x \in (a, b)$. Consider a curve defined by $t \mapsto (q(t), f(t))$.

05. INTEGRALS

definite integral

Let f be a continuous function on [a, b] divided into n intervals.

Riemann sum

$$f(x_1^*) + f(x_2^*) + \dots + f(x_n^*) \Delta x = \sum_{i=1}^n f(x_i^*) \Delta x$$

• the lengths of subintervals are not necessarily equal • $\max\{|x_i - x_{i-1} : i = 1, \cdots, n|\} \rightarrow 0$

definite integral of *f* from *a* to *b*:

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*})\Delta x$$
where $\Delta x = \frac{b-a}{n}$

•
$$f$$
 is integrable from a to b if $\lim_{n\to\infty} \sum_{i=1}^n f(x_i^*)\Delta x$ exists
• continuous functions are integrable.
• $\int_a^b f(x)dx = -\int_b^a f(x)dx$
• $\int_a^a f(x)dx = 0$

geometric meaning

properties

let f and g be continuous functions.

- $$\begin{split} & \cdot \int_a^b c \, dx = (b-a)c \\ & \cdot \int_a^b (f(x) \pm g(x)) \, dx = \int_a^b f(x) \, dx \pm \int_a^b g(x) \, dx \\ & \cdot \int_a^c f(x) \, dx = \int_b^c f(x) \, dx \pm \int_a^b f(x) \, dx \\ & \cdot \text{ suppose } f(x) \ge 0 \text{ on } [a,b]. \text{ Then } \int_a^b f(x) \, dx \ge 0. \\ & \cdot \text{ suppose } f(x) \ge g(x) \text{ on } [a,b]. \end{split}$$
- • Then $\int_a^b f(x) \, dx \ge \int_a^b g(x) \, dx$.
- suppose $m \leq f(x) \leq M$ on [a, b].
- Then $m(b-a) \leq \int_a^b f(x) \, dx \leq M(b-a).$

fundamental theorem of calculus

for $g(x) = \int_{a}^{x} f(t) dt$ $(a \le x \le b)$, • g is continuous on [a, b]• g is differentiable on (a, b)• g'(x) = f(x) on (a, b) or $\frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$ f is the derivative of F f(x) F is an antiderivative of f

F is continuous on
$$[a, b]$$
, and $F' = f$ on (a, b) ,

$$\int_{a}^{b} f(x) dx = F(b) - F(a) = F(x) \Big|_{x=a}^{x=b}$$

$$\int_{a}^{x} \frac{d}{dx} F(t) dt = F(x) - F(a)$$

$$\boxed{f(t)} \underbrace{\int_{a}^{x}}_{F(x)} \underbrace{F(x)}_{f(x)} \underbrace{\frac{d}{dx}}_{F(x)} \underbrace{f(x)}_{F(x)}$$

indefinite integral

if

• indefinite integral of $f, \int f(x) \, dx = F(x) + c$

• antiderivative (of a continuous function f): a continuous function F such that F' = f.

antiderivatives of *f* are functions of form *F* + *c* indefinite integral is a family of antiderivatives
 properties of indefinite integral

•
$$\int (af(x) \pm bg(x)) dx = a \int f(x) dx \pm b \int g(x) dx$$

integration by parts

$$u \, dv = uv - \int v \, du$$

substitution rule (I) let u = g(x) be a differentiable function.

indefinite integral

if f and g' are continuous,

$$\int f(g(x))g'(x) \, dx = \int f(u) \, du$$

definite integral

$$\begin{array}{l} \text{if }g' \text{ are continuous on } [a,b],\\ \text{and }f \text{ is continuous on the range of }u=g(x),\\ \int_a^b f(g(x))g'(x)\,dx=\int_{g(a)}^{g(b)}f(u)\,du \end{array}$$

substitution rule (II)

let f and g' be continuous functions, and x = q(t) is a one-to-one differentiable function.

$$\int f(x) \, dx = \int f(g(t))g'(t) \, dt$$

improper integral for discontinuous integrands

if
$$f$$
 is continuous on $[a,b)$ and discontinuous at $b,$
$$\int_a^b f(x)\,dx = \lim_{t\to b^-}\int_a^t f(x)\,dx$$

if
$$f$$
 is continuous on $(a,b]$ and discontinuous at $a,$
$$\int_a^b f(x)\,dx = \lim_{t\to a^+}\int_t^b f(x)\,dx$$

- $\int_a^b f(x) dx$ is the limit of integrals.
 - converges if the limit exists
 - diverges if the limit does not exist

discontinuity in the interior of the interval

suppose
$$f$$
 has discontinuity at $c \in (a, b)$. then

$$\int_{a}^{b} f(x) dx = \lim_{t \to c^{-}} \int_{a}^{t} f(x) dx + \lim_{t \to c^{+}} \int_{t}^{b} f(x) dx$$

over infinite intervals

$$\int_{-\infty}^{\infty} f(x) \, dx = \int_{-\infty}^{a} f(x) \, dx + \int_{a}^{\infty} f(x) \, dx$$

if $\int_a^t f(x) dx$ exists for every $t \ge a$, then the **improper integral** of f from a to ∞ is $\int_a^{\infty} f(x) dx = \lim_{t \to \infty} \int_a^t f(x) dx$

if $\int_t^b f(x) dx$ exists for every $t \le b$, then the **improper integral** of f from $-\infty$ to b is $\int_{-\infty}^b f(x) dx = \lim_{t \to -\infty} \int_t^b f(x) dx$

• NOTE: $\int_{-\infty}^{\infty} f(x) \, dx \neq \lim_{a \to \infty} \int_{-a}^{a} f(x) \, dx$

06. INVERSE FUNCTIONS & INTEGRATION

one to one functions

```
let f be a function with domain D.
f is one-to-one if, for any a, b \in D,
       a \neq b \Rightarrow f(a) \neq f(b)
    OR f(a) = f(b) \Rightarrow a = b
```

inverse function

- let f be a one-to-one function with domain A and range B. • its inverse function f^{-1} is the function with
- domain B and range A, and • $f^{-1}(y) = x \iff y = f(x)$ for any $x \in A, y \in B$ • $f^{-1} \circ f = id_A$ and $f \circ f^{-1} = id_B$ • $(f^{-1})^{-1} = f$ • NOTE: $(f(x))^{-1}$ is the reciprocal of the value of f(x)

properties

- let f be a one-to-one continuous function on an open interval Ι.
- the inverse function f^{-1} is also continuous.
- if f is differentiable at $a \in I$, and $f'(a) \neq 0$, then

•
$$f^{-1}$$
 is differentiable at $b = f(a)$
• $(f^{-1})'(b) = \frac{1}{f'(a)}$

$$(f^{-1})'(f(a)) = \frac{1}{f'(a)}$$

techniques of integration integration of rational functions

for $f = \frac{A(x)}{B(x)}$

• manipulate such that $\deg A(x) < \deg B(x)$, then decompose into partial fractions

$$\cdot \int \frac{1}{(x+a)^k} dx = \begin{cases} \ln|x+a| + K, & \text{if } k = 1\\ \frac{(x+a)^{1-k}}{1-k} + K, & \text{if } k \ge 1 \end{cases} \\ \cdot \int \frac{u}{(u^2+d^2)^r} du = \begin{cases} \frac{1}{2}\ln(u^2+d^2), & \text{if } r = 1\\ \frac{(u^2+d^2)^{1-r}}{2(1-r)}, & \text{if } r \ge 2 \end{cases} \\ \cdot \int \frac{1}{(u^2+d^2)^r} du = \frac{1}{d^{2r-1}} \int \frac{1}{(t^2+1)^r} dt \end{cases}$$

partial fractions

• for each linear factor $(x + a)^k$: • $\frac{A_1}{x+a} + \frac{A_2}{(x+a)^2} + \dots + \frac{A_k}{(x+a)^k}$ • for each quadratic factor $(x^2 + bx + c)^r$: • $\frac{B_1x+C_1}{x^2+bx+c}$ + \cdots + $\frac{B_rx+C_r}{(x^2+bx+c)^r}$

common trigonometric substitutions

• $\sqrt{a^2 - x^2}$, $x = a \sin t$, $t \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ • $\sqrt{x^2 - a^2}$, $x = a \sec t$, $t \in [0, -\frac{\pi}{2}) \cup (\pi, \frac{3\pi}{2}]$ • $a^2 + x^2$, $x = a \tan t$, $t \in (-\frac{\pi}{2}, \frac{\pi}{2})$

universal trigonometric substitution

any rational expression in $\sin x$ and $\cos x$ can be integrated using the substitution $t = \tan \frac{x}{2}, x \in (-\pi, \pi).$ $\sin x = \frac{2t}{1+t^2}, \quad \cos x = \frac{1-t^2}{1+t^2}, \quad \frac{dx}{dt} = \frac{2}{1+t^2}$

derivatives of trigonometric functions

function	derivative	function	derivative
$\sin^{-1} x$	$\frac{1}{\sqrt{1-r^2}}$	$\csc^{-1} x$	$\frac{-1}{\pi \sqrt{\pi^2 - 1}}$
$\cos^{-1} x$	$\frac{\sqrt{1-x}}{\sqrt{1-x^2}}$	$\sec^{-1} x$	$\frac{x\sqrt{x^2-1}}{x\sqrt{x^2-1}}$
$\tan^{-1} x$	$\frac{\sqrt{1-x}}{1+x^2}$	$\cot^{-1}x$	$\frac{x\sqrt{x}}{\frac{-1}{1+x^2}}$

trigonometric identities

natural logarithmic function

• $\ln x$ is increasing on \mathbb{R}^n $(\frac{d}{dx} \ln x > 0)$

logarithmic differentiation I

aka take ln on both sides and implicitly differentiate

for $y = f_1(x)f_2(x)\cdots f_n(x)$ (product of nonzero functions), $\ln |y| = \ln |f_1(x)| + \ln |f_2(x)| + \dots + \ln |f_n(x)|$ $\frac{dy}{dx} = \left[\frac{f_1'(x)}{f_1(x)} + \frac{f_2'(x)}{f_2(x)} + \dots + \frac{f_n'(x)}{f_n(x)}\right]y$ $= \left[\frac{f_1'(x)}{f_1(x)} + \frac{f_2'(x)}{f_2(x)} + \dots + \frac{f_n'(x)}{f_n(x)}\right] f_1(x) f_2(x) \cdots f_n(x)$

logarithmic differentiation II

$$\begin{aligned} & \text{for } y = f(x)^{g(x)}(f(x) > 0), \\ & \ln y = g(x) \ln f(x) \Rightarrow \frac{dy}{dx} = y \frac{d}{dx} [g(x) \ln f(x)] \\ & \lim_{x \to a} (f(x)^{g(x)}) = \lim_{x \to a} \exp\left(g(x) \ln f(x)\right) \\ & = \exp\left(\lim_{x \to a} g(x) \ln f(x)\right) \end{aligned}$$

exponential function

 $y = e^x = \exp(x) \iff \ln y = x$ $\exp(x) = \ln^{-1}(x) (\exp(x)$ is the inverse of $\ln x$) $a^x = \exp(x \ln a) = e^{x \ln a}$ $y = \frac{1}{4}$ Area = A $y = \ln x$ $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$ • $\ln(e^x) = x$ for $x \in \mathbb{R}$ and $e^{\ln y} = y$ for $y \in \mathbb{R}^+$ common equations • $\lim_{x \to \infty} e^x = \infty$, $\lim_{x \to -\infty} e^x = 0$

$$\lim_{x \to \infty} \frac{e}{x^n} = \infty \text{ for } n \in \mathbb{Z}^+$$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

properties

$$\begin{array}{l} \bullet a^{u}a^{v} = a^{u+v} \\ \bullet a^{-u} = \frac{1}{a^{u}} \\ \bullet (a^{u})^{v} = a^{uv} \\ \bullet (a^{x})' = a^{x}\ln a \\ \bullet \frac{d}{dx}x^{r} = rx^{r-1} \end{array} \\ \bullet \begin{array}{l} \bullet \lim_{x \to \infty} e^{x} = \infty, \lim_{x \to -\infty} e^{x} = 0 \\ \bullet \lim_{x \to \infty} \frac{e^{x}}{x^{n}} = \infty \text{ for } n \in \mathbb{Z}^{+} \\ \bullet e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \dots \\ \bullet \int x^{r} dx = \begin{cases} \frac{x^{r+1}}{r+1} + C & \text{ if } r \neq -1, \\ \ln x + C & \text{ if } r = -1, \\ \bullet \text{ if } r \text{ is irrational, then } x^{r} \text{ is only defined for } x \geq 0. \end{cases}$$

hyperbolic trigonometric functions

$$\sinh x = \frac{e^x - e^{-x}}{2}, \quad (\sinh x)' = \cosh x$$
$$\cosh x = \frac{e^x + e^{-x}}{2}, \quad (\cosh x)' = \sinh x$$

•
$$\cosh^2 x - \sinh^2 x = 1$$

• parametrization represents a hyperbola -
let $\begin{cases} x = \cosh t, & \text{Then } x^2 - y^2 = 1 \\ y = \sinh t. & \text{tanh } x = \frac{\sinh x}{\cosh x} \\ y = \sinh x, & \cosh x = \frac{\sinh x}{\cosh x} \\ y = \sinh x, & \cosh x = \frac{1}{\cosh x} \\ y = \sinh x, & \cosh x = \frac{1}{\cosh x} \\ \cosh x = \cosh x \\ \cosh x = \cosh x$

• $\frac{d}{dx} \tanh^{-1} x = \operatorname{sech} x$

07. APPLICATIONS OF INTEGRALS

volume

disk/washer method

method of cylindrical shells

rotation about **x-axis** from
$$y = a$$
 to $y = b$:
 $V = 2\pi \int_{a}^{b} yf(y) \, dy = 2\pi \int (radius \cdot height) \, dy$
rotation about **y-axis** from $x = a$ to $x = b$:
 $V = 2\pi \int_{a}^{b} xf(x) \, dx = 2\pi \int (radius \cdot height) \, dx$

arc length

arc length =
$$\int \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} dt$$

surface area of revolution

Let *f* be a smooth function such that f(x) > 0 on [a, b]. Then the area of the surface obtained by rotating the curve $y = f(x), a \le x \le b$ about the *x*-axis is

$$A = \int_{a}^{b} 2\pi f(x) \sqrt{1 + (f'(x))^2} \, dx$$

08. ORDINARY DIFFERENTIAL EQUATIONS

 $\frac{dy}{dx} = f(x) \Rightarrow y = \int f(x) \, dx$ $\frac{dy}{dx} = f(y) \Rightarrow x = \int \frac{1}{f(y)} \, dy$

separation of variables

$$\begin{aligned} \frac{dy}{dx} &= f(x)g(y) \Rightarrow \frac{1}{g(y)} \, dy = f(x) \, dx \\ &\Rightarrow \int \frac{1}{g(y)} \, dy = \int f(x) \, dx \end{aligned}$$

singular solution

- if y = C is a solution to q(y) = 0, then it is a **singular**
- solution to $\frac{dy}{dx} = f(x)g(x)$. singular solution disappears if the equation is $\frac{1}{g(x)}\frac{dy}{dx} = f(x)$
- · (can ignore singular solutions in this course)

homogenous equations

```
Suppose \frac{dy}{dx} = F(x, y) is not separable.
• suppose F(x, y) is homogenous of degree zero
    • i.e. F(x, y) = F(tx, ty) for all t \in \mathbb{R} \setminus \{0\}
• let z = \frac{y}{x}. Then
```

• y = xz and $\frac{dy}{dx} = x\frac{dz}{dx} + z$ • $F(x, y) = F(\frac{x}{x}, \frac{y}{x}) = F(1, z)$

• $x\frac{dz}{dx} + z = F(1, z) \Rightarrow$ separable!

first order linear differential equations

general equation: $\frac{dy}{dx} + p(x)y = q(x)$ 1. find $P(x) = \int p(x) dx$ 2. multiply both sides by integrating factor $v(x) = e^{P(x)}$: • $e^{P(x)}\frac{dy}{dx} + e^{P(x)}p(x)y = e^{P(x)}q(x)$ • $\frac{d}{dx}(e^{P(x)}y) = e^{P(x)}q(x)$ 3. integrate with respect to x

• $e^{P(x)}y = \int e^{P(x)}q(x) dx$

$$y = \frac{1}{e^{P(x)}} \int e^{P(x)} q(x) \, dx$$

note: if the equation is not linear in y but is linear in x, can take the reciprocal and use $\frac{dx}{dy}$ instead.

Bernoulli's equation

$$\frac{dy}{dx} + p(x)y = q(x)y^n$$

```
• if n = 0 or n = 1:
   · the system is linear
• if n \neq 0, 1:
```

• let
$$z = y^{1-n} \Rightarrow \frac{dz}{dx} = (1-n)y^{-n}\frac{dy}{dx}$$

• multiply both sides of the equation by $(1-n)y^{-n}$ · equation is reduced to a linear equation

• $\frac{dz}{dx} + (1-n)p(x)z = (1-n)q(x)$

applications

· compound interest • let r be the interest rate (%), A be the money • ODE: $\frac{dA}{dt} = rA; \quad A(0) = C$ • solve for $A(t) = Ce^{rt}$ radiocarbon dating - let λ be the half life, C be % of Carbon left • ODE: $\frac{dC}{dt} = kC; \quad C(0) = 1; \quad k = -\frac{\ln 2}{\lambda}$ • solve $C(t) = e^{kt}$

• population growth - let M be max. population (carrying capacity), r be the rate of change of population • ODE: $\frac{dP}{dt} = rP(M - P)$

• solve
$$P(t) = \frac{M}{1 + (\frac{M}{P(0)} - 1)e^{-rt}}$$

- newton's law of cooling
- let T_S be the surrounding temperature, r > 0 be the rate of heat loss

• ODE:
$$\frac{dT}{dt} = -r \cdot (T - T_S)$$

• $\ln |T - T_S| = -rt + C$ draining tank problem (torricelli's law)

· the rate at which water flows out is proportional to the

square root of the water's depth let A be the base area of the tank, R be the rate of flow

• ODE: $A\frac{dh}{dt} = -R$

misc

triangle inequality

$$|a+b| \leq |a|+|b|$$
 for all $a,b \in \mathbb{R}$

binomial theorem

$$(a+b)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k}$$

= $a^{n} + \binom{n}{1} a^{n-1} b + \dots + \binom{n}{n-1} a b^{n-1} + b^{n}$

where the binomial coefficient is given by $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

factorisation

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1})$$

$$a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$$

$$a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$$

misc

• $\forall x \in (0, \frac{\pi}{2}), \sin x < x < \tan x$ • $\sin \theta = \frac{\tan \theta}{\sqrt{\tan^2 \theta + 1}}$

differentiation

f(x)	f'(x)
$\tan x$	$\sec^2 x$
$\csc x$	$-\csc x \cot x$
$\sec x$	$\sec x \tan x$
$\cot x$	$-\csc^2 x$
$\sin^{-1} f(x)$	$\frac{f'(x)}{\sqrt{1 - [f(x)]^2}}, f(x) < 1$
$\cos^{-1} f(x)$	$-\frac{f'(x)}{\sqrt{1-[f(x)]^2}}, \ f(x) < 1$
$\tan^{-1} f(x)$	$\frac{f'(x)}{1+[f(x)]^2}$
$\cot^{-1} f(x)$	$-rac{f'(x)}{1+[f(x)]^2}$
$\sec^{-1} f(x)$	$\frac{f'(x)}{ f(x) \sqrt{[f(x)]^2 - 1}}$
$\csc^{-1} f(x)$	$-\frac{f'(x)}{ f(x) \sqrt{[f(x)]^2-1}}$

integration

f(x)	$\int f(x)$
$\tan x$	$\ln(\sec x), x < rac{\pi}{2}$
$\cot x$	$\ln(\sin x), \scriptscriptstyle 0 < x < \pi$
$\csc x$	$-\ln(\csc x + \cot x), \scriptscriptstyle 0 < x < \pi$
$\sec x$	$\ln(\sec x + \tan x), x < \frac{\pi}{2}$