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00. FUNCTIONS & SETS
sets

A = {x | properties ofx}
• A ⊆ B: A is a subset of B
• A * B: A is not a subset of B
• A = B ⇐⇒ A ⊆ B ∧B ⊆ A
• operations on sets

• union: A ∪B = {x | x ∈ A ∨ x ∈ B}
• intersection: A ∩B = {x | x ∈ A ∧ x ∈ B}
• difference: A\B = {x | x ∈ A ∧ x /∈ B}

• common notations on sets:
• R,Q,Z,N where N = Z+

• ∅: empty set
closed interval (inclusive):
[a, b] = {x | a ≤ x ≤ b}

open interval (exclusive):
(a, b) = {x | a < x < b}
(a,∞) = {x | a < x}

functions
• existence: ∀a ∈ A, f(a) ∈ B
• uniqueness: ∀a ∈ A has only one image in B.
• for f : A→ B

• domain: A, codomain: B
• range: {f(x) | x ∈ A}

• for this mod:
• A,B ⊆ R
• if A is not stated, the domain of f is the largest possible
set for which f is defined

• if B is not stated, B = R

graphs of functions
The graph of f is the set

G(f) := {(x, f(x)) | x ∈ A}

• if A,B ⊆ R then G(f) ⊆ A×B ⊆ R× R
• each element is a point on the Cartesian plane R2

algebra of functions
function domain

(f + g)(x) := f(x) + g(x) A ∩B
(f − g)(x) := f(x)− g(x) A ∩B

(fg)(x) := f(x)g(x) A ∩B
(f/g)(x) := f(x)/g(x) {x∈A∩B|g(x)6=0}

types of functions

• rational function: R(x) =
P (x)
Q(x)

, where P,Q are
polynomials andQ(x) 6= 0

• every polynomial is a rational function (Q(x) = 1)
• algebraic function: constructed from polynomials using
algebraic operations

• a function f is increasing on a set I if
xq < x2 ⇒ f(x1) < f(x2) for any x1, x2 ∈ I .

• a function f is decreasing on a set I if
xq < x2 ⇒ f(x1) > f(x2) for any x1, x2 ∈ I .

• even/odd:
• even function: ∀x, f(−x) = f(x)

• symmetric about the y-axis
• odd function: ∀x, f(−x) = −f(x)

• symmetric about the origin O
• any function defined on R can be decomposed uniquely
into the sum of an even function and an odd function

• power function: xn

• xn is

{
an odd function, if n is odd
an even function, if n is even

01. LIMITS
precise definition of limits
Let f be a function defined on an open interval containing a,
except possibly at a.

The limit of f(x) (as x approaches a) equals L if,

for every ε > 0 there is δ > 0 such that
0 < |x− a| < δ ⇒ |f(x)− L| < ε

informally,
• 0 < |x− a| < δ ⇒ x is close to but not equal to a.
• 0 < |f(x)− L| < ε⇒ f(x) is arbitrarily close to L.

limit laws
you cannot apply any laws on limits UNLESS you
have shown that the limit exists!

• Let c ∈ R. lim
x→a

c = c

• lim
x→a

x = a

Suppose lim
x→a

f(x) = L and lim
x→a

g(x) = M . Let c be a
constant.
• lim
x→a

(cf(x)) = cL = c lim
x→a

f(x)

• lim
x→a

(f(x) + g(x)) = L+M = lim
x→a

f(x) + lim
x→a

g(x)

• lim
x→a

(f(x)− g(x)) = lim
x→a

f(x)− lim
x→a

g(x)

• lim
x→a

(f(x)g(x)) = lim
x→a

f(x) lim
x→a

g(x)

• lim
x→a

f(x)

g(x)
=

limx→a f(x)

limx→a g(x)
provided that lim

x→a
g(x) 6= 0

• lim
x→a

(f(x))n =
(

lim
x→a

f(x)
)n

• lim
x→a

n
√
f(x) = n

√
lim
x→a

f(x)

if lim
x→a

f(x)

g(x)
exists and lim

x→a
g(x) = 0, then lim

x→a
f(x) = 0

direct substitution property

Let f be a polynomial or rational function.

If a is in the domain of f , then
lim
x→a

f(x) = f(a)

If f(x) = g(x) for all x near a except possibly at a, then
lim
x→a

f(x) = lim
x→a

g(x)

If a is not in the domain (e.g. 0 denominator), don’t apply
directly - convert to an equivalent function and then sub in

inequalities on limits

Suppose lim
x→a

f(x) = L and lim
x→a

g(x) = M .

lemma
if f(x) ≤ g(x) for all x near a (except possibly at a),

then L ≤M .
lemma

If f(x) ≥ 0 for all x, then L ≥ 0.

one-sided limits
• limit laws also hold for one-sided limits

lim
x→a

f(x) = L ⇐⇒ lim
x→a+

f(x) = lim
x→a−

f(x) = L

f(x)→ L⇐ x→ a⇔
{
x→ a+ ⇒ f(x)→ L

x→ a− ⇒ f(x)→ L

definition of one-sided limits

LH Limit: lim
x→a−

f(x) = L

if for every ε > 0 there exists δ > 0 such that
0 < a− x < δ ⇒ |f(x)− L| < ε

RH Limit: lim
x→a+

f(x) = L

if for every ε > 0 there exists δ > 0 such that
0 < x− a < δ ⇒ |f(x)− L| < ε

definition of infinite limits (lim f(x) = ∞)
lim
x→a

f(x) =∞
if for everyM > 0 there exists δ > 0 such that

0 < |x− a| < δ ⇒ f(x) > M

negative infinite limit:
0 < |x− a| < δ ⇒ f(x) < M

• ∞ is NOT a number⇒ an infinite limit does NOT exist

limits to infinity (limx→∞)
Suppose f is defined on [M,∞) for someM ∈ R:

lim
x→∞

f(x) = L:
For every ε > 0, there existsN such that

x > N ⇒ |f(x)− L| < ε

lim
x→∞

f(x) =∞:
For everyM > 0, there existsN such that

x > N ⇒ f(x) > M

squeeze theorem
Suppose f(x) is bounded by g(x) and h(x) where
• g(x) ≤ f(x) ≤ h(x) for all x near a (except at a), and
• lim
x→a

g(x) = lim
x→a

h(x) = L.

Then lim
x→a

f(x) = L.

02. CONTINUOUS FUNCTIONS
definition of continuity

a function f is continuous at a ⇐⇒
f is continuous from the left and from the right at a.
lim
x→a

f(x) = lim
x→a+

f(x) = lim
x→a−

f(x) = f(a)

a function f is continuous at an interval if it is continuous at
every number in the interval.

f is continuous on open interval (a, b)
⇔ f is continuous at every x ∈ (a, b)
f is continuous on closed interval [a, b]

⇔


f is continuous at every x ∈ (a, b)

f is continuous from the right at a
f is continuous from the left at b

precise definition of continuity
a function f is continuous at a number a if
for all ε > 0, there exists δ > 0 such that
|x− a| < δ ⇒ |f(x)− f(a)| < ε

• aka lim
x→a

f(x) = f(a)



continuity test

f is continuous at a⇔
1. f is defined at a (a is in the domain of f )
2. lim

x→a
f(x) exists

3. lim
x→a

f(x) = f(a)

examples of discontinuity
removable infinite jump

properties of continuous functions
let f and g be functions continuous at a. let c be a constant.
1. cf is continuous at a
2. f + g is continuous at a
3. f − g is continuous at a
4. fg is continuous at a
5. f/g is continuous at a, provided g(a) 6= 0

other properties
• a polynomial is continuous everywhere
• a rational function is continuous on its domain

• if P (x) andQ(x) are polynomials, P (x)
Q(x)

is continuous
wheneverQ(x) 6= 0.

• f(x) = c is continuous on R for all c ∈ R.
• f(x) = x is continuous on R.

trigonometric functions
• f(x) = sinx and g(x) = cosx are continuous everywhere
• tanx, secx are continuous whenever cosx 6= 0

• domain: R\{± pi
2
,± 3π

2
,± 5π

2
, . . . }

• cotx, cscx are continuous whenever sinx 6= 0
• domain: R\{0,±π,±2π, · · · }

composite of continuous functions
if f is continuous at b and lim

x→a
g(x) = b, then

lim
x→a

f(g(x)) = f( lim
x→a

g(x)) = f(b)

if g is continuous at a and f is continuous at g(a),
then f ◦ g is continuous at a.

lim
x→a

(f ◦ g)(x) = (f ◦ g)(a)

substitution theorem
Suppose y = f(x) such that lim

x→a
f(x) = b. If

1. g is continuous at b, OR
2. lim

y→b
g(y) exists and f is one-to-one.

• ∀x near a, except at a, f(x) 6= b and lim
y→b

g(y) exists

Then lim
x→a

g(f(x)) = lim
y→b

g(y)

intermediate value theorem
Let f be a function continuous on [a, b] with f(a) 6= f(b).

LetN be a number between f(a) and f(b).
Then there exists c ∈ (a, b) such that f(c) = N .

03. DERIVATIVES
definition of derivatives
• f is differentiable at a if f ′(a) exists
• f ′(a) is the slope of y = f(x) at x = a

• f ′(a) = dy
dx
|x=a

• dy
dx

:= lim
x→0

∆y
∆x

(derivative of y with respect to x)

• f ′(x) = y′ = dy
dx

= df
dx

= d
dx
f(x) = Dxf(x) = · · ·

the derivative of a function f
f ′(x) := lim

h→0

f(x+h)−f(x)
h

the derivative of a function f at a number a is
f ′(a) := lim

x→a
f(x)−f(a)

x−a

tangent line

the tangent line to y = f(x) at (a, f(a)) is
the line passing through (a, f(a)) with slope f ′(a):

y = f ′(a)(x− a) + f(a)

differentiable functions
• f is differentiable at a if

• f ′(a) := lim
x→0

f(a+h)−f(a)
h

exists.

• f is differentiable on (a, b) if
• f is differentiable at every c ∈ (a, b)

differentiability & continuity
• differentiability⇒ continuity

• if f is differentiable at a, then f is continuous at a.
• continuity ; differentiability

differentiability
• every polynomial and rational function is differentiable on its
domain

• the domain of f ′ may be smaller than the domain of f .
• trigonometric functions are differentiable on the domain

differentiation
differentiation of trigonometric functions

lim
θ→0

sin θ

θ
= 1 lim

θ→0

1− cos θ

θ
= 0

chain rule
If g is differentiable at a and f is differentiable at b = g(a),

then F = f ◦ g is differentiable at a and
F ′(a) = (f ◦ g)′(a) = f ′(b)g′(a) = f ′(g(a))g′(a)

If z = f(y) and y = g(x), then
dz
dx

= dz
dy

dy
dx

dz
dx
|x=a = dz

dy
|y=b

dy
dx
|x=a

generalised chain rule
h is differentiable at a; g is differentiable at B = h(a); f is
differentiable at c = g(b).

(f ◦ (g ◦ h))′ = f ′ ◦ (g ◦ h) · (g ◦ h)′

= f ′(c)g′(b)h′(a)

Leibniz notation:
If y = h(x), z = g(y), w = f(z),

dw
dx

= dw
dz

dz
dy

dy
dx

implicit differentiation
• assumes that dy

dx
exists

second derivative
f ′′(x) = d

dx
( dy
dx

) = d2y
dx2

f ′ = D(f)⇒ f ′′ := D2(f)

higher derivatives
f (0) := f

For any positive integer n, f (n) := (f (n−1))′

if y = f(x), then f (n)(x) = y(n) = dny
dxn

= Dnf(x)

• for f(x) = 1
x
, f (n)(x) =

(−1)nn!

xn+1

• for f(x) = xm, f (n)(x) =

{
m!xm−n

(m−n)!
ifm ≥ n,

0 ifm < n.

04. APPLICATIONS OF
DIFFERENTIATION
extreme values of functions
Let f be a function with domainD.
• local max/min ; global max/min
• global max/min ; local max/min

global (absolute) max/min
• aka extreme values

f has a global maximum at c ∈ D
⇔ f(c) ≥ f(x) for all x ∈ D

f has a global minimum at c ∈ D
⇔ f(c) ≤ f(x) for all x ∈ D

local (relative) max/min
• aka "turning points"
• "all x near c" = for all x in an open interval containing c

f has a local maximum at c ∈ D
⇔ f(c) ≥ f(x) for all x near c
f has a local minimum at c ∈ D
⇔ f(c) ≤ f(x) for all x near c

extreme value theorem
existence

if f is continuous on a finite closed interval [a, b],
then f attains extreme values on [a, b].

value
the extreme value occurs at either

critical numbers or the endpoints (x = a, x = b).

critical numbers
c ∈ D is a critical number of f if
f ′(c) = 0, or f ′(c) does not exist.

fermat’s theorem
If f has a local maximum or minimum at c, then

1. c is a critical number.
2. If f ′(c) exists, then f ′(c) = 0.

Rolle’s Theorem
Let f be a function such that f is continuous on [a, b], f is

differentiable on (a, b), and f(a) = f(b).
Then there is a number c ∈ (a, b) such that f ′(c) = 0.

mean value theorem
Let f be a function such that f is continuous on [a, b]

and f is differentiable on (a, b).
Then there exists c ∈ (a, b) such that

f ′(c) =
f(b)−f(a)

b−a

• generalisation of Rolle’s theorem when f(a) = f(b).

ordinary differential equations
Let f and g be continuous on [a, b].
If f ′(x) = g′(x) for all x ∈ (a, b),

then f(x) = g(x) + C on [a, b] for a constant C.

increasing/decreasing test
Let f be continuous on [a, b] and differentiable on (a, b).
• f ′(x) > 0 for any x ∈ (a, b)⇒ f is increasing.

• f is increasing⇒ f ′(x) ≥ 0 on (a, b)
• f ′(x) < 0 for any x ∈ (a, b)⇒ f is decreasing.

• f is decreasing⇒ f ′(x) ≤ 0 on (a, b)
• f ′(x) = 0⇒ f could be increasing OR decreasing.



first derivative test
Let f be continuous and c be a critical number of f .
Suppose f is differentiable near c (except possibly at c).
At c, if f ′ changes from:
• (+) to (-)⇒ f has a local maximum at c
• (-) to (+)⇒ f has a local minimum at c
• no change in sign⇒ f has neither local max/min at c.

concavity

f is concave up on an open interval I ⇔ f ′ is increasing
⇔ for a < b ∈ I , f ′(a) < f ′(b)

⇔ f(x) > f ′(y)(x− y) + f(y) for any x 6= y ∈ I

f is concave down on an open interval I ⇔ f ′ is decreasing
⇔ for a < b ∈ I , f ′(a) > f ′(b)

⇔ f(x) < f ′(y)(x− y) + f(y) for any x 6= y ∈ I

concavity test
• f ′′ > 0 on I ⇒ f is concave up on I
• f ′′ < 0 on I ⇒ f is concave down on I

second derivative test
If f ′(c) = 0 and f ′′(c) exists,
• f ′′(c) < 0⇒ f has a local maximum at c.
• f ′′(c) > 0⇒ f has a local minimum at c.
• f ′′(c) = 0⇒ inconclusive

inflection point
• A point P on the curve y = f(x) is an inflection point if

• f is continuous at P , and
• the concavity of the curve changes at P .

• if c is an inflection point and f is twice differentiable at c,
then f ′′(c) = 0.

Taylor’s Theorem

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 + · · ·+

f(n)(a)
n!

(x− a)n +Rn,

where Rn =
f(n+1)(c)

(n+1)!
(x− a)(n+1) for c between x and a

Taylor Series
As Rn → 0 as n→∞, then

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n

L’Hopital’s Rule
Let f and g be functions such that
• ( 0

0
) lim
x→a

f(x) = lim
x→a

g(x) = 0, OR
(∞∞ ) lim

x→a
|f(x)| = lim

x→a
|g(x)| =∞,

• f and g are differentiable near a (except at a),
• g′(x) 6= 0 near a (except at a).

Then lim
x→a

f(x)

g(x)
= lim
x→a

f ′(x)

g′(x)
provided that the RHS limit exists or is ±∞

Cauchy’s Mean Value Theorem
Let f, g be continuous on [a, b], differentiable on (a, b), and
g′(x) 6= 0 for any x ∈ (a, b). Consider a curve defined by

t 7→ (g(t), f(t)).
Then there exists c ∈ (a, b) such that

f ′(c)
g′(c) =

f(b)−f(a)
g(b)−g(a)

05. INTEGRALS
definite integral
Let f be a continuous function on [a, b] divided into n intervals.

Riemann sum[
f(x∗1) + f(x∗2) + · · ·+ f(x∗n)

]
∆x =

n∑
i=1

f(x∗i )∆x

• the lengths of subintervals are not necessarily equal
• max{|xi − xi−1 : i = 1, · · · , n|} → 0

definite integral of f from a to b:∫ b

a
f(x)dx = lim

n→∞

n∑
i=1

f(x∗i )∆x

where ∆x = b−a
n

• f is integrable from a to b if lim
n→∞

n∑
i=1

f(x∗i )∆x exists.

• continuous functions are integrable.
•
∫ b
a f(x)dx = −

∫ a
b f(x)dx

•
∫ a
a f(x)dx = 0

geometric meaning

∫ b

a
f(x) dx = A+ −A− (net area)

properties
let f and g be continuous functions.
•
∫ b
a c dx = (b− a)c

•
∫ b
a (f(x)± g(x)) dx =

∫ b
a f(x) dx±

∫ b
a g(x) dx

•
∫ c
a f(x) dx =

∫ c
b f(x) dx±

∫ b
a f(x) dx

• suppose f(x) ≥ 0 on [a, b]. Then
∫ b
a f(x) dx ≥ 0.

• suppose f(x) ≥ g(x) on [a, b].
• • Then

∫ b
a f(x) dx ≥

∫ b
a g(x) dx.

• supposem ≤ f(x) ≤M on [a, b].
• Thenm(b− a) ≤

∫ b
a f(x) dx ≤M(b− a).

fundamental theorem of calculus
for g(x) =

∫ x
a f(t) dt (a ≤ x ≤ b),

• g is continuous on [a, b]
• g is differentiable on (a, b)
• g′(x) = f(x) on (a, b) or d

dx

∫ x
a f(t) dt = f(x)

if F is continuous on [a, b], and F ′ = f on (a, b),∫ b

a
f(x) dx = F (b)− F (a) = F (x)

∣∣∣x=b

x=a∫ x

a

d

dx
F (t) dt = F (x)− F (a)

indefinite integral
• indefinite integral of f ,

∫
f(x) dx = F (x) + c

• antiderivative (of a continuous function f ): a continuous
function F such that F ′ = f .

• antiderivatives of f are functions of form F + c
• indefinite integral is a family of antiderivatives

• properties of indefinite integral

•
∫

(af(x)± bg(x)) dx = a

∫
f(x) dx± b

∫
g(x) dx

integration by parts

u dv = uv −
∫
v du

substitution rule (I)
let u = g(x) be a differentiable function.

indefinite integral
if f and g′ are continuous,∫
f(g(x))g′(x) dx =

∫
f(u) du

definite integral
if g′ are continuous on [a, b],

and f is continuous on the range of u = g(x),∫ b

a
f(g(x))g′(x) dx =

∫ g(b)

g(a)
f(u) du

substitution rule (II)
let f and g′ be continuous functions, and
x = g(t) is a one-to-one differentiable function.∫

f(x) dx =

∫
f(g(t))g′(t) dt

improper integral
for discontinuous integrands

if f is continuous on [a, b) and discontinuous at b,∫ b

a
f(x) dx = lim

t→b−

∫ t

a
f(x) dx

if f is continuous on (a, b] and discontinuous at a,∫ b

a
f(x) dx = lim

t→a+

∫ b

t
f(x) dx

•
∫ b
a f(x) dx is the limit of integrals.
• converges if the limit exists
• diverges if the limit does not exist

discontinuity in the interior of the interval
suppose f has discontinuity at c ∈ (a, b). then∫ b

a
f(x) dx = lim

t→c−

∫ t

a
f(x) dx+ lim

t→c+

∫ b

t
f(x) dx

over infinite intervals∫ ∞
−∞

f(x) dx =

∫ a

−∞
f(x) dx+

∫ ∞
a

f(x) dx

if
∫ t
a f(x) dx exists for every t ≥ a, then

the improper integral of f from a to∞ is∫ ∞
a

f(x) dx = lim
t→∞

∫ t

a
f(x) dx

if
∫ b
t f(x) dx exists for every t ≤ b, then

the improper integral of f from −∞ to b is∫ b

−∞
f(x) dx = lim

t→−∞

∫ b

t
f(x) dx

• NOTE:
∫∞
−∞ f(x) dx 6= lima→∞

∫ a
−a f(x) dx



06. INVERSE FUNCTIONS &
INTEGRATION
one to one functions

let f be a function with domainD.
f is one-to-one if, for any a, b ∈ D,

a 6= b⇒ f(a) 6= f(b)
OR f(a) = f(b)⇒ a = b

inverse function
let f be a one-to-one function with domain A and range B.
• its inverse function f−1 is the function with

• domain B and range A, and
• f−1(y) = x ⇐⇒ y = f(x) for any x ∈ A, y ∈ B

• f−1 ◦ f = idA and f ◦ f−1 = idB
• (f−1)−1 = f
• NOTE: (f(x))−1 is the reciprocal of the value of f(x)

properties
let f be a one-to-one continuous function on an open interval
I .
• the inverse function f−1 is also continuous.
• if f is differentiable at a ∈ I , and f ′(a) 6= 0, then

• f−1 is differentiable at b = f(a)
• (f−1)′(b) = 1

f ′(a)

(f−1)′(f(a)) = 1
f ′(a)

techniques of integration
integration of rational functions

for f =
A(x)
B(x)

,
• manipulate such that degA(x) < degB(x),
then decompose into partial fractions

• common rational functions:

•
∫

1

(x+ a)k
dx =

{
ln |x+ a|+K, if k = 1
(x+a)1−k

1−k +K, if k ≥ 1

•
∫

u

(u2 + d2)r
du =

{
1
2

ln(u2 + d2), if r = 1
(u2+d2)1−r

2(1−r) , if r ≥ 2

•
∫

1

(u2 + d2)r
du =

1

d2r−1

∫
1

(t2 + 1)r
dt

•

partial fractions
• for each linear factor (x+ a)k :

• A1
x+a

+ A2
(x+a)2

+ · · ·+ Ak
(x+a)k

• for each quadratic factor (x2 + bx+ c)r :
• B1x+C1
x2+bx+c

+ · · ·+ Brx+Cr
(x2+bx+c)r

common trigonometric substitutions
•
√
a2 − x2, x = a sin t, t ∈ [−π

2
, π

2
]

•
√
x2 − a2, x = a sec t, t ∈ [0,−π

2
) ∪ (π, 3π

2
]

• a2 + x2, x = a tan t, t ∈ (−π
2
, π

2
)

universal trigonometric substitution

any rational expression in sinx and cosx can be integrated
using the substitution t = tan x

2
, x ∈ (−π, π).

sinx = 2t
1+t2

, cosx = 1−t2
1+t2

, dx
dt

= 2
1+t2

derivatives of trigonometric functions

function derivative
sin−1 x 1√

1−x2

cos−1 x −1√
1−x2

tan−1 x 1
1+x2

function derivative
csc−1 x −1

x
√
x2−1

sec−1 x 1

x
√
x2−1

cot−1 x −1
1+x2

trigonometric identities
• tan−1 x+ cot−1 x− π

2

• sec−1 x+ csc−1 x =

{
π
2
, if x ≥ 1

5π
2
, if x ≤ −1

natural logarithmic function

natural logarithmic function, lnx =
∫ x
1

1
t
dt (x > 0)

• lnx < 0 for 0 < x < 1; lnx > 0 for > 1; ln 1 = 0
• lnx is increasing on Rn ( d

dx
lnx > 0)

logarithmic differentiation I

aka take ln on both sides and implicitly differentiate

for y = f1(x)f2(x) · · · fn(x) (product of nonzero functions),
ln |y| = ln |f1(x)|+ ln |f2(x)|+ · · ·+ ln |fn(x)|

dy
dx

=
[
f ′1(x)

f1(x)
+
f ′2(x)

f2(x)
+ · · ·+ f ′n(x)

fn(x)

]
y

=
[
f ′1(x)

f1(x)
+
f ′2(x)

f2(x)
+ · · ·+ f ′n(x)

fn(x)

]
f1(x)f2(x) · · · fn(x)

logarithmic differentiation II

for y = f(x)g(x)(f(x) > 0),
ln y = g(x) ln f(x)⇒ dy

dx
= y d

dx
[g(x) ln f(x)]

lim
x→a

(f(x)g(x)) = lim
x→a

exp (g(x) ln f(x))

= exp
(

lim
x→a

g(x) ln f(x)
)

exponential function
y = ex = exp(x) ⇐⇒ ln y = x

exp(x) = ln−1(x) (exp(x) is the inverse of lnx)
ax = exp(x ln a) = ex ln a

e = lim
n→∞

(1 +
1

n
)n

• ln(ex) = x for x ∈ R and eln y = y for y ∈ R+

• common equations
• lim
x→∞

ex =∞, lim
x→−∞

ex = 0

• lim
x→∞

ex

xn
=∞ for n ∈ Z+

• ex =

∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+ . . .

properties

• auav = au+v

• a−u = 1
au

• (au)v = auv

• (ax)′ = ax ln a
• d
dx
xr = rxr−1

• lim
x→∞

ex =∞, lim
x→−∞

ex = 0

• lim
x→∞

ex

xn
=∞ for n ∈ Z+

• ex =

∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+ . . .

•
∫
xr dx =

{
xr+1

r+1
+ C if r 6= −1,

lnx+ C if r = −1,
• if r is irrational, then xr is only defined for x ≥ 0.

hyperbolic trigonometric functions
sinhx = ex−e−x

2
, (sinhx)′ = coshx

coshx = ex+e−x

2
, (coshx)′ = sinhx

• cosh2 x− sinh2 x = 1
• parametrization represents a hyperbola -

let

{
x = cosh t,

y = sinh t.
Then x2 − y2 = 1

tanhx = sinh x
cosh x

cothx = cosh x
sinh x

sech x = 1
cosh x

csch x = 1
sinh x

inverse hyperbolic functions:
sinh−1 x = y ⇔ x = sinh y
cosh−1 x = y ⇔ x = cosh y

• properties
• sinh−1 x = ln(x+

√
x2 + 1), x ∈ R

• cosh−1 x = ln(x+
√
x2 − 1), x ≥ 1

• tanh−1 x = 1
2

ln( 1+x
1−x ), −1 < x < 1

• d
dx

sinh−1 x = 1√
x2+1

• d
dx

cosh−1 x = 1√
x2−1

• d
dx

tanh−1 x = sech x

07. APPLICATIONS OF INTEGRALS
volume

disk/washer method

rotate about the x-axis:

V = π

∫ b

a
[f(x)]2 dx

rotate about the y-axis:

V = π

∫ d

c
[f(y)]2 dy

method of cylindrical shells

rotation about x-axis from y = a to y = b:

V = 2π

∫ b

a
yf(y) dy = 2π

∫
(radius · height) dy

rotation about y-axis from x = a to x = b:

V = 2π

∫ b

a
xf(x) dx = 2π

∫
(radius · height) dx

arc length

• a function f is smooth if f ′ is continuous.
• arc length,

L =

∫ b

a

√
1 + (f ′(x))2 dx

parametric curves:

arc length =
∫ √

(
dx

dt
)2 + (

dy

dt
)2 dt

surface area of revolution
Let f be a smooth function such that f(x) ≥ 0 on [a, b].
Then the area of the surface obtained by rotating the curve

y = f(x), a ≤ x ≤ b about the x-axis is

A =

∫ b

a
2πf(x)

√
1 + (f ′(x))2 dx

08. ORDINARY DIFFERENTIAL
EQUATIONS

dy
dx

= f(x)⇒ y =
∫
f(x) dx

dy
dx

= f(y)⇒ x =
∫

1
f(y)

dy



separation of variables

dy

dx
= f(x)g(y)⇒

1

g(y)
dy = f(x) dx

⇒
∫

1

g(y)
dy =

∫
f(x) dx

singular solution
• if y = C is a solution to g(y) = 0, then it is a singular
solution to dy

dx
= f(x)g(x).

• singular solution disappears if the equation is
1

g(x)
dy
dx

= f(x)

• (can ignore singular solutions in this course)

homogenous equations
Suppose dy

dx
= F (x, y) is not separable.

• suppose F (x, y) is homogenous of degree zero
• i.e. F (x, y) = F (tx, ty) for all t ∈ R\{0}

• let z = y
x
. Then

• y = xz and dy
dx

= x dz
dx

+ z
• F (x, y) = F (x

x
, y
x

) = F (1, z)

• x dz
dx

+ z = F (1, z)⇒ separable!

first order linear differential equations
general equation: dy

dx
+ p(x)y = q(x)

1. find P (x) =
∫
p(x) dx

2. multiply both sides by integrating factor v(x) = eP (x):
• eP (x) dy

dx
+ eP (x)p(x)y = eP (x)q(x)

• d
dx

(eP (x)y) = eP (x)q(x)
3. integrate with respect to x

• eP (x)y =
∫
eP (x)q(x) dx

y =
1

eP (x)

∫
eP (x)q(x) dx

note: if the equation is not linear in y but is linear in x, can take
the reciprocal and use dx

dy
instead.

Bernoulli’s equation
dy
dx

+ p(x)y = q(x)yn

• if n = 0 or n = 1:
• the system is linear

• if n 6= 0, 1:
• let z = y1−n ⇒ dz

dx
= (1− n)y−n dy

dx

• multiply both sides of the equation by (1− n)y−n

• equation is reduced to a linear equation
• dz
dx

+ (1− n)p(x)z = (1− n)q(x)

applications
• compound interest

• let r be the interest rate (%), A be the money
• ODE: dA

dt
= rA; A(0) = C

• solve for A(t) = Cert

• radiocarbon dating
• let λ be the half life, C be % of Carbon left
• ODE: dC

dt
= kC; C(0) = 1; k = − ln 2

λ

• solve C(t) = ekt

• population growth - letM be max. population (carrying
capacity), r be the rate of change of population

• ODE: dP
dt

= rP (M − P )

• solve P (t) = M

1+( M
P (0)

−1)e−rt

• newton’s law of cooling
• let TS be the surrounding temperature, r > 0 be the rate
of heat loss

• ODE: dT
dt

= −r · (T − TS)
• ln |T − TS | = −rt+ C

• draining tank problem (torricelli’s law)
• the rate at which water flows out is proportional to the
square root of the water’s depth

• let A be the base area of the tank, R be the rate of flow
• ODE: A dh

dt
= −R

misc
triangle inequality

|a+ b| ≤ |a|+ |b| for all a, b ∈ R

binomial theorem

(a+ b)n =

n∑
k=0

(n
k

)
an−kbk

= an +
(n

1

)
an−1b+ · · ·+

( n
n−1

)
abn−1 + bn

where the binomial coefficient is given by(n
k

)
= n!

k!(n−k)!

factorisation
an− bn = (a− b)(an−1 +an−2b+ · · ·+abn−2 + bn−1)

a3 − b3 = (a− b)(a2 + ab+ b2)
a3 + b3 = (a+ b)(a2 − ab+ b2)

misc
• ∀x ∈ (0, π

2
), sinx < x < tanx

• sin θ = tan θ√
tan2 θ+1

differentiation
f(x) f ′(x)

tanx sec2 x
cscx − cscx cotx
secx secx tanx
cotx − csc2 x

sin−1 f(x)
f ′(x)√

1−[f(x)]2
, |f(x)|<1

cos−1 f(x) − f ′(x)√
1−[f(x)]2

, |f(x)|<1

tan−1 f(x)
f ′(x)

1+[f(x)]2

cot−1 f(x) − f ′(x)

1+[f(x)]2

sec−1 f(x)
f ′(x)

|f(x)|
√

[f(x)]2−1

csc−1 f(x) − f ′(x)

|f(x)|
√

[f(x)]2−1

integration
f(x)

∫
f(x)

tanx ln(secx), |x| < π
2

cotx ln(sinx), 0 < x < π

cscx − ln(cscx+ cotx), 0 < x < π

secx ln(secx+ tanx), |x| < π
2
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