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00. FUNCTIONS & SETS

sets
A ={z | propertiesofx}
« A C B: Aisasubsetof B
+ A ¢ B: Ais not a subset of B
«cA=B < ACBABCA
« operations on sets
sunion: AUB={z |z € AV € B}
s intersection: AN B ={z |z € ANz € B}
- difference: A\B = {z |z € ANz ¢ B}
- common notations on sets:
*R,Q,Z,Nwhere N = 7T
+ (): empty set
closed interval (inclusive):
[a,b] ={z|a <z <b}

open interval (exclusive):
(a,b) = {z | a < z < b}
(a,0) ={z|a <z}

functions
- existence: Va € A, f(a) € B
* uniqueness: Ya € A has only one image in B.
«forf: A— B
» domain: A, codomain: B
s range: {f(z) | x € A}
« for this mod:
+ABCR
- if A is not stated, the domain of f is the largest possible
set for which f is defined
« if Bis not stated, B = R

graphs of functions
The graph of f is the set
G(f) =A{(z, f(z)) | = € A}
+ifA,BC RthenG(f) CAXx BCRxR

- each element is a point on the Cartesian plane R?

algebra of functions

function domain
(f+9)(x) = f(z) +g(x) ANB
(f—9)@) = J(@) —g(x) ANB
(f9)(@) := f(z)g(x) ANB
(f/g)(x) := f(z)/g(x) | {zcANB|g(x)70}

types of functions

- rational function: R(z) = ggi; , where P, Q are

polynomials and Q(z) # 0
« every polynomial is a rational function (Q(x) = 1)
« algebraic function: constructed from polynomials using
algebraic operations
- a function f is increasing on a set I if
zq < x2 = f(z1) < f(z2)forany z1,z2 € I.
- a function f is decreasing on a set [ if
xq < w2 = f(x1) > f(xe)forany xy,z2 € 1.
 even/odd:
- even function: Vz, f(—z) = f(x)

» symmetric about the y-axis
« odd function: Vz, f(—z) = — f(z)

» symmetric about the origin O
« any function defined on R can be decomposed uniquely

into the sum of an even function and an odd function
- power function: z"
" {an odd function, if n is odd

cz™is

an even function, if n is even

01. LIMITS
precise definition of limits

Let f be a function defined on an open interval containing a,
except possibly at a.

The limit of f(x) (as x approaches a) equals L if,

for every e > 0 there is § > 0 such that
O0<|z—a|<d=|f(x)—L|<e

<

1
L+ 150

L

1
L - 150

informally,
* 0 < |z —a| <6 = xis close to but not equal to a.
+ 0 < |f(z) — L| < e = f(x) is arbitrarily close to L.

limit laws

you cannot apply any laws on limits UNLESS you
have shown that the limit exists!

eletceR. limc=c¢
r—a
e limz=a
r—a

Suppose lim f(z) = L and lim g(z) = M. Letcbe a
Tr—ra Tr—a

constant.
. lim (cf(x)) =cL = cxliI}l f(x)
. lun ‘() +g(z)) =L+ M = lim flz) + lmg(w)

E

§

(f
im (f(z) —g(x)) = lim f(z) — hm 9(z)
(f(x) (2)) = hm f(ﬂf) Jim g(m)

 lim f(w) = M provided that lim g(x) # 0
z—a g(aj) limg_q g(;p) r—a
. hm (f(:L))” (hm f(i))
. hm f = /hm flz
if lim fg 3 exists and hm g(x) = 0, then hm flx)=0
Tr—a glx

direct substitution property
Let f be a polynomial or rational function.
If a is in the domain of f, then
lim f(z) = f(a)
r—ra

g(z) for all z near a except possibly at a, then
lim f(z) = lim g(x)
Tr—a r—ra

It f(z) =

If a is not in the domain (e.g. 0 denominator), don’t apply
directly - convert to an equivalent function and then sub in

inequalities on limits

Suppose lim f(z) = L and lim g(xz) = M.
Tr—a Tr—a

lemma
if f(z) < g(z) for all z near a (except possibly at a),
then L < M.

lemma
If f(x) > Oforall , then L > 0.

one-sided limits
« limit laws also hold for one-sided limits

lim f@) =L > lim_f(@)= lim f(z) =L

r—at = f(z) > L

f(x)—>L<:.r—>a<:>{ =) > L

Tr—a
definition of one-sided limits
lim f(z)=1L

r—a~

if for every ¢ > 0 there exists § > 0 such that

LH Limit:

O<a—z<dé=|f(z)—L|<e
RH Limit: lim f(z) =
r—ra

if for every ¢ > 0 there exists § > 0 such that
O<z—a<d=|f(z)—L|<e

definition of infinite limits (lim f(z) = c0)
lim f(z) = o0
r—ra
if for every M > 0 there exists § > 0 such that
O0<l|lz—al|<d= f(z) >M

Ol a-3 ¢ a+ts

negative infinite limit:
O0<l|lr—al|<d= flz) <M

» 00 is NOT a number = an infinite limit does NOT exist

limits to infinity (lim,_, o)
Suppose f is defined on [M, oo) for some M € R:
lim f(z)=L:
xTr—r 00
For every ¢ > 0, there exists IV such that
z>N=|f(x)—L|<e
lim f(z) =00
xTr—r0o0
For every M > 0, there exists N such that
>N = f(z) >M

squeeze theorem

Suppose f(x) is bounded by g(z) and h(z) where
» g(x) < f(z) < h(x) for all x near a (except at a), and
» lim g(z) = lim h(z) = L.

r—a r—ra

Then Th_rg f(z)=L.
y

g 1
2 / z%sin
ol T

02. CONTINUOUS FUNCTIONS

definition of continuity
a function f is continuous at a <=
f is continuous from the left and from the right at a.
lim f(z) = lim f(z)= lim f(z)= f(a)
T—a z—at z—a~

a function f is continuous at an interval if it is continuous at
every number in the interval.

f is continuous on open interval (a, b)
& fis continuous at every x € (a, b)
f is continuous on closed interval [a, b]

f is continuous at every z € (a, b)
< 4 f is continuous from the right at @
[ is continuous from the left at b

precise definition of continuity

a function f is continuous at a number a if
for all e > 0, there exists 6 > 0 such that
e —a| < 6= |f(x) — fla)| <e

+ aka lim f(z) =

T—a

fla)



continuity test

f is continuous at a <

1. fisdefined at a (a is in the domain of f)
2. lim f(x) exists
Tr—ra

3. lim f(z) = f(a)

examples of discontinuity

removable

infinite
1]

properties of continuous functions

let f and g be functions continuous at a. let c be a constant.
1. cf is continuous at a
2. f + gis continuous at a
3. f — gis continuous at a
4. fgis continuous at a
5. f/gis continuous at a, provided g(a) # 0
other properties
« a polynomial is continuous everywhere
« arational function is continuous on its domain
« if P(z) and Q(x) are polynomials, Q&)
whenever Q(x) # 0.
« f(x) = cis continuous on R for all ¢ € R.
 f(z) = x is continuous on R.

is continuous

trigonometric functions

 f(z) = sinz and g(x) = cos z are continuous everywhere
« tan x, sec x are continuous whenever cos x # 0
ine pi 3m 5
+ domain: R\{ijfiT’ 25, }
+ cot x, csc  are continuous whenever sin z # 0
« domain: R\{0, &, £27,--- }

composite of continuous functions

if fis continuous atb and lim g(z) = b, then
r—a

Jim f(g(x)) = f(lim g(x)) = £(b)

f g is continuous at @ and f is continuous at g(a)
then f o g is continuous at a.

lim (0. 9)(@) = (2 9)(@)

substitution theorem
Suppose y = f(z) such that h—rfl flx)=0b.If
x a

1. gis continuous at b, OR
2. lim g(y) exists and f is one-to-one.
y—b

« Vz near a, except at a, f(z) # band linr%7 g(y) exists
y—r

Then lim g(f(z)) = lim g(y)
r—a y—b

intermediate value theorem

Let f be a function continuous on [a, b] with f(a) # f(b).
Let IV be a number between f(a) and f(b).
Then there exists ¢ € (a,b) such that f(c) = N.

v

- /\/
N |

03. DERIVATIVES

definition of derivatives

- [ is differentiable at a if f’(a) exists
* f'(a)isthe slope of y = f(z) atz = a
* (@) = Hlo=a
C e = 1im0% (derivative of y with respect to x)
d d
)=y =gt =L =L@ =Duf(@) =

the derivative of a function f
/ .— |im LEth)—f(z)
Fiz) R0 h
the derivative of a function f at a number a is
f’(a) = lim fx)=f(a)
TS rz—a

a

tangent line

the tangent lineto y = f(z) at (a, f(a)) is
the line passing through (a, f(a)) with slope f/(a):

lv=F@@=-a+/)

differentiable functions

- [ is differentiable at a if

. () — lim {@th)—f(a)
f'(a) := lim 7
« [ is differentiable on (a, b) if

- f is differentiable at every ¢ € (a, b)

exists.

differentiability & continuity

« differentiability = continuity
« if f is differentiable at a, then f is continuous at a.
« continuity = differentiability

differentiability

« every polynomial and rational function is differentiable on its
domain
« the domain of f’ may be smaller than the domain of f.
« trigonometric functions are differentiable on the domain

differentiation

differentiation of trigonometric functions

. 1—cosf
=1 lim —— =0
60—0 (%

chain rule

If g is differentiable at a and f is differentiable at b = g(a),
then F' = f o g is differentiable at a and

Fl(a) = (fog)'(a) = f'(b)g'(a) = f'(9(a))g'(a)

If z = f(y) and y = g(x), then
dz _ dz dy
dz ~ dy dx
d d d
Elo=a = Zly=b GElo=a

generalised chain rule

h is differentiable at a; g is differentiable at B = h(a); f is
differentiable at ¢ = g(b).

(fo(goh)) =f'o(goh)-(goh)
= f'(c)g' (b)h' (a)

Leibniz notation:

fy =h(z), 2 =g(y), w= f(2),
dw _ dw dz dy
dr ~ dz dy dx

implicit differentiation

+ assumes that % exists
second derivative
e o dodyy
f (7) - dm(dm) -

f=D(f)= f" =

higher derivatives

a2y
dZIQ
(f

)

f(0> = f
For any positive integer n, f(") := (f(n—1))/
ity = f(2), then £(")(z) = y(") = S = D" f(x)

g

cfor f(a) = L, ) (x) = E

. z) =z (n) xT) = % frm 2 "
for f(x)  JH(=) {0 itm < n.
04. APPLICATIONS OF
DIFFERENTIATION

extreme values of functions
Let f be a function with domain D.
* local max/min - global max/min
« global max/min =- local max/min

global (absolute) max/min

« aka extreme values

f has a global maximum at c € D
& f(e) > f(z)forallz € D
f has a global minimum at ¢ € D
& fle) < f(z)forallz € D

local (relative) max/min

+ aka "turning points"
+ "all z near ¢" = for all = in an open interval containing ¢

f has alocal maximum at c € D
< f(e) > f(x)forallz near ¢
f has alocal minimum at ¢ € D
< f(e) < f(x) forallz near ¢

extreme value theorem
existence
if f is continuous on a finite closed interval [a, b],
then f attains extreme values on [a, b].
value
the extreme value occurs at either
critical numbers or the endpoints (z = a, z = b).

critical numbers

¢ € D is a critical number of f if
f'(e) = 0, 0r f’(c) does not exist.

fermat’s theorem
If f has a local maximum or minimum at ¢, then
1. cis a critical number.
2. If f'(c) exists, then f’(c) = 0.

Rolle’s Theorem
Let f be a function such that f is continuous on [a, ], f is
differentiable on (a, b), and f(a) = f(b).
Then there is a number ¢ € (a, b) such that f/(c) = 0.

Yy Yy

mean value theorem

Let f be a function such that f is continuous on [a, b]
and f is differentiable on (a, b).
Then there exists ¢ € (a, b) such that
(b)—f(a
f/((:) — £( l);—i(a)

(b, f())

y—fla) _ f(b)—f(d)
r—a b—a

o a

« generalisation of Rolle’s theorem when f(a) = f(b).
ordinary differential equations

Let f and g be continuous on [a, b].
If f/(z) = ¢'(z) forall z € (a,b),
then f(x) = g(x) + C on [a, b] for a constant C'.

increasing/decreasing test
Let f be continuous on [a, b] and differentiable on (a, b).
« f(xz) > Oforany z € (a,b) = [ isincreasing.
- fisincreasing = f’(z) > Oon (a,b)
« f/(z) < Oforany z € (a,b) = f is decreasing.
- fis decreasing = f’(z) < 0Oon (a,b)
 f/(z) = 0 = f could be increasing OR decreasing.



first derivative test

Let f be continuous and c be a critical number of f.
Suppose f is differentiable near ¢ (except possibly at ¢).
At c, if ' changes from:

* (+)to (-) = f has alocal maximum at ¢

. (-)to (+ = f has a local minimum at ¢
* no change in sign = f has neither local max/min at c.

concavity

Yy

o] a PE] o] a b
Concave Up Concave Down

f is concave up on an open interval I <> f’ is increasing
Sfora<bel f'(a) < f'(b)
< f(@) > f'(y)(@—y) + fly) foranyz £y € 1

f is concave down on an open interval [ < f’ is decreasing
sfora<bel f'(a) > f'(b)
< f@) < f'y)(x—y) + fly) foranyz # y € 1

(a, f(a))

concavity test

« f”” >00onI = fisconcave upon [
« f”” < 0onI = fisconcave down on I

second derivative test
If f/(c) = 0and f”(c) exists,
« f”(c) < 0 = f has alocal maximum at c.

+ f"(¢) > 0 = f has a local minimum at c.
+ f"(¢) = 0 = inconclusive

inflection point

« A point P on the curve y = f(x) is an inflection point if
« fis continuous at P, and
« the concavity of the curve changes at P.
« if cis an inflection point and f is twice differentiable at c,
then f"/(c) = 0.

Taylor’s Theorem

f@) = f(a) + f(a) (@ —a) + FgP (@ —a)? - +
j(n)(a)( )" + R,
where R, = f(’%ll))(,p) (x — a)™+1D) for c between z and a

Taylor Series

As R, — 0asn — oo, then

% £(n) (g
=3 D o
n=0 )

L'Hopital’s Rule
Let f and g be functions such that
0y 1i ) = 1i _
() lim f(z) = lim g(z) =0, OR
0y 1 = 1i =
(£2) lim |f(2)] = lim |g(2)| = oo
+ f and g are differentiable near a (except at a),
* g'(z) # 0 near a (except at a).

Then lim @ =

r—ra g 7,)

f'(z)

0 g/ (z)
provided that the RHS limit exists or is +-c0

Cauchy’s Mean Value Theorem

Let f, g be continuous on [a, b], differentiable on (a, b), and
g'(z) # 0forany = € (a,b). Consider a curve defined by
tes (9(t), £(2)).

Then there exists ¢ € (a, b) such that

f'e) _ f()—f(a)
g’(c) — g(®)—g(a)

(g(b), f(b))

(g(c), f(c))

() — f(a)
g(b) — g(a)

(g(a), f(a))

05. INTEGRALS

definite integral

Let f be a continuous function on [a, b] divided into n intervals.

Riemann sum

[F(@}) + F@3) + -+ fz)] Aw = Zf
« the lengths of subintervals are not necessanly equal
emax{|z; —xj—1:i=1,---,n|} -0

definite integral of f from a to b:

/b f(x)dx = nli_{{;i:f(lz Az
@ i=1

b—a
n

where Az =

n

« [ is integrable from a to b if hm Z f(z}) Az exists.

« continuous functions are mtegrable
jf dszfbf(xdw
< [2 f(z)dz =0

geometric meaning

Y y= f(z)
A-
a

(0}

— A™ (net area)

/bf(a:)dx:A+

properties
let f and g be continuous functions.
. f{fcd:p =(b—a)c
$Ja@) £ g(@) de = [ (@) dot [ (x) do
< [ f(x dszb f(x) dTﬂ:j f(z)dx
- suppose f(z) > 0on [a,b]. Then fa f(z)dx > 0.
* suppose f(x) > g(x) on [a, b].
« <+ Then fab f(z)dx > fab g(z) dz
* suppose m < f(xz) < M on [a, b].
- Thenm(b — a) < [° f(x) de < M(b— a).

fundamental theorem of calculus
forg(x) = [T f(t)dt (a <@ <Db),

* g is continuous on [a, b]

- g is differentiable on (a, b)

- g'(x) = f(z)on(a,b) or L [FF(t)dt=f(x)
f is the derivative of '
f(@)) W (r)l

F is an antiderivative of f
if F'is continuous on [a, b], and F" = f on (a, b),

b
/ f(x) de = F(b)

@ q
/a R (t)dt = F(a)

z=b

— F(a) = F(x)

T=a

— F(a)

I £
£(1) Flo) l———(7@)
N A
d T
i /.
FO}———(70)) F(z) - Fla))
[N g

indefinite integral

« indefinite integral of f,

/f(?:)dac =F(z)+c
- antiderivative (of a continuous function f): a continuous
function F such that F/ = f.
« antiderivatives of f are functions of form F' 4 ¢
« indefinite integral is a family of antiderivatives
« properties of indefinite |ntegra|

-/( F(x) % by(x) x—a/f dxib/ o(z) do
integration by parts
udv:uv—/vdu

substitution rule (I)
let w = g(z) be a differentiable function.

indefinite integral

[ 1t

definite integral

if f and g’ are continuous,

Ng' (@) do = [ () d

if g’ are continuous on [a, b],
and f is continuous on the range of u = g(z),

b g(b)
z))g (z) dx = u) du
[ 1e@ng@ /M fw)

substitution rule (ll)

let f and g’ be continuous functions, and
z = g(t) is a one-to-one differentiable function.

[ 1@ da= [ 1ao)g'®) ar

improper integral
for discontinuous integrands

if f is continuous on [a, b) and discontinuous at b,
b t
/ f(z)dz = lim / f(z)dx
a t—b— Jq

if f is continuous on (a, b] and discontinuous ata,

b
f(x)de = hm f( ) d

. f: f(z) dz is the limit of integrals.
« converges if the limit exists
« diverges if the limit does not exist

discontinuity in the interior of the interval

suppose f has discontinuity at ¢ € (a, b). then

/f x*hm/f dq:—',—hm/f

over infinite intervals
[ t@de= [ f@des [T @)

if f(f f(x) dx exists for every t > a, then
the improper integral of f from a to co is

/:C flz)dz = fl_l)n;o /at f(z)dz

if f z) dx exists for every t < b, then
thei |mproper integral of f from —ocoto bis

/io fa)de = lim_ /tb () da

* NOTE: [*_ f(z)dz # limg oo [, f(2)dx



06. INVERSE FUNCTIONS &
INTEGRATION

one to one functions
let f be a function with domain D.
f is one-to-one if, for any a, b € D,
a#b= f(a) # f(b)
OR f(a) = f(b)=a=b

inverse function
let f be a one-to-one function with domain A and range B.
- its inverse function f 1 is the function with

+ domain B and range A, and

cf N y)=2 <= y=f(z)foranyz € A,y € B
cflof=tidsand fo f~! =idp
(fHt=f
« NOTE: (f(x)) ! is the reciprocal of the value of f(z)
properties

let f be a one-to-one continuous function on an open interval
1.
- the inverse function f—1 is also continuous.
« if f is differentiable at a € I, and f’(a) # 0, then
« f~1is differentiable at b = f(a)
R N A |

(P (@) = 7y

;o —

techniques of integration

integration of rational functions
- A
for f = Bg;,
« manipulate such that deg A(x) < deg B(x),
then decompose into partial fractions
« common rational functions:

/ 1 J Injlz+a|l+ K, ifk=1
(z+a)F ™" %JFK, ith>1

u J %ln(u2+d2), ifr=1
/ w2 +azyr T 7“32%31)4, itr>2

/ 1 d 1 / 1
. =
(’LL2 + d2)1‘ d2r—1 (t2 + 1)7‘

partial fractions

« for each linear factor (z + a)*:
Ay Ao . A
z+a + (z+a)2 + + (z+a)k
« for each quadratic factor (2 + bx 4 ¢)":
. Biz+Cy N Brx+Cy
z24bx+c (z2+bx+c)"

common trigonometric substitutions

*Va? — 22, x =asint, te[—%,%}
V22 — a2, z=asect, tE[O,*g)U(ﬂ'?%
ca?+ 22, x=atant, te(*g,%)

universal trigonometric substitution

any rational expression in sin x and cos x can be integrated

using the substitution ¢ = tan 5, =z € (=, 7).
s 2t _1-t?  de 2
Smmx = 1+t2’ (3051’—714Ft27 dt —71+t2

derivatives of trigonometric functions

function | derivative function | derivative
-1 1 —1 —1
sin™ " x cscT x| ———
\/1—1:c2 .r,\/arl,Q—l
—1 - -1
cos”tx secT x| ———
\/11—272 zy/z2 -1
an—1 —1 —
tan™ " x Ti.2 cot Tia2
trigonometric identities
ctan"lz 4 cot™ 1z — 5
z ifex>1
eseclo4escta=42" 7=
o, ife < -1

natural logarithmic function

natural logarithmic function, Inz = [}* % dt (z >0)

11 represents the shaded area

elnz <0for0O<z<1; Inx>0for>1;, Inl=0

* In x is increasing on R™ (% Inz > 0)

logarithmic differentiation |

aka take In on both sides and implicitly differentiate

fory = fi(z)f2() -
Infyl =In|fi(z)] + In|f2(2)| + -

4 In | fn(2)]
ay _ (Sl |, fh)
= [+ 28+

! ()
/ mz)]y
= [BE8+ 28+ +ﬁg]fl(x)f"‘(f”)"'f”(x)

logarithmic differentiation Il

fory = f(2)9) (f(z) > 0),
Iny = g(z)In f(z) = % =yLg(z)In f(z)]

lim (f(2)7®) = lim exp (9(x) In f(2))

| — exp (Jim g(x)In f(x))

- fn(z) (product of nonzero functions),

exponential function

y=e* =exp(z) < hy=z

L(z) (exp(z) is the inverse of In z)
zlna

exp(xz) =1In~
a® = exp(xzlna) = €

y v

y=1Ina

o 1 A t

e= lim (1+ — )

n—oo n

+In(e®) =z forx € Rand eV = yfory € RT
« common equations

+ lim e”
Tr—r 00

lim e =0
xr—r — 00

= 00,
6.’1}
* lim — =ooforn € Z*

Tr—r o0 €T
o ¥ — i bl <
n=0
properties
e i T H T _
. qtq? = qutv Ili)ngoe o0, xlilzlooe 0
P e — L . e* N
. (a“) — auv zli{%o IT =ooforn €Z
*(@®) =a”lna 22
.%xr:r;ﬂ"“_l * Zi 1+QE+§+
n=0 v :
°fxrdm: ;LT+1 +C ifr#£ -1,
Inz+C  ifr=-—1,

« if r is irrational, then x" is only defined for z > 0.

hyperbolic trigonometric functions

©_g—w )

sinhz = &=*—, (sinhx)’ = coshx
T, - N

coshz = € +26 , (coshz) =sinhx

«cosh?z —sinh?z =1
+ parametrization represents a hyperbola -

x = cosht
let 7 Thenz? —y? =1
y = sinh t.
. __ sinhz
y tanhx = COS]}; p
y = coshz h = So8AE
cothw = sinh z
y = tanha sechw = —1—
cosh x
cschax = —1
Z - sinh x
y = cscha
ot } inverse hyperbolic functions:
/ R .
/ sinh~!z =y & x =sinhy
/ Coshflz:yﬁx:coshy
* properties
esinh ™'z =In(z +v22 + 1),z €R

e cosh™

1w*ln(w+\/m2—1),x2 1

«tanh~la = 5 L In( 1Jrz) —-l<z<1
d 1y 1

e dginhlg =
4o sin =T

. d cosh™la = 2L

. di tanh™! 2 = sechz
T

07. APPLICATIONS OF INTEGRALS

volume

disk/washer method

N
o | 1 bl‘
rotate aboubt the x-axis:

v:w/ [f(2)]? de V=

rotate about the y-axis:

d
w [

method of cylindrical shells

radius
Y

rotation about x-axis from y = a toy = b:

b
V= 27r/ yf(y)dy =27 /(Tadius - height) dy

a
rotation about y-axis from x = a to x = b:

b
V= 27r/ xf(z)dx = 2w /(Tadius - height) dx

arc length

f/ « afunction f is smooth if f/ is continuous.
///’” - arc length,

L:/ab It (F@)2 de

arametrlc curves:

(*)2+(

arc length = )2 dt

surface area of revolution

Let f be a smooth function such that f(z) > 0 on [a, b].
Then the area of the surface obtained by rotating the curve
y = f(z),a <z < babout the z-axis is

b
A= [Cemp@ni+ (F@)da

08. ORDINARY DIFFERENTIAL

EQUATIONS
W=fa)=y=[f(z)ds
%:f(y)i:r ff(ly)dy



separation of variables

dy

: ! = f(x)dx
a—f(x)g(y)iﬁdy—f( )d

1 .
@dy:/j(x)dx

- ify = C'is a solution to g(y) = 0, then it is a singular
. d
solutionto 5% = f(z)g(x).
« singular solution disappears if the equation is
o = 1@)
g(x) de —
« (can ignore singular solutions in this course)

singular solution

homogenous equations

Suppose % = F(z,y) is not separable.
- suppose F'(z, y) is homogenous of degree zero

cie. F(x,y) = F(tz, ty) forallt € R\{0}
«letz = ¥ Then

+y =axzand fiiz —xﬂ +z

CF(ey) = F(2, )2 F(1,2)

. ng + z = F(1,z) = separable!

first order linear differential equations

general equation' dy +p(m)y =q(z)

1. find P(z fp

2. multiply both sides by mtegrating factorv(z) = e
. P(2) dy + eP@p(z)y = P @ g(x)
. %( P(z) y) = eP@g()

3. integrate with respect to z

P(z).

«eP@)y = f@P(m)q(m) dx

! P(a)
- ,P(z d
v= gy [ <Pl da

note: if the equation is not linear in y but is linear in z, can take
the reciprocal and use |nstead

Bernoulli’s equalion

9 4 p(x)y = q(x)y™

cifn=00rn=1:
« the system is linear

cifn#0,1:
cletz=y' " = g—i =(1 7n)y*";—g
« multiply both sides of the equation by (1 — n)y—"
« equation is reduced to a linear equation

- 42 4 (1 -n)p(z)z = (1 - n)q()

applications

» compound interest
- let r be the interest rate (%), A be the money
< ODE: %4 = r4; A(0)=C
« solve for A(t) = Ce'?

« radiocarbon dating
« let A be the half life, C' be % of Carbon lef
< ODE: %€ = kC; C(0)=1; k=—
« solve C(t) = eF?

* population growth - let M/ be max. population (carrying

capacity), r be the rate of change of population

« ODE: 42 = rP(M — P)

1
In2
A

M
« solve P(t) = W

* newton’s law of cooling
« let T's be the surrounding temperature, » > 0 be the rate

of heat loss
« ODE: 4L = —r (T — Ty)
eIn|T —Tg|=—-rt+C

« draining tank problem (torricelli’s law)
« the rate at which water flows out is proportional to the
square root of the water’s depth
« let A be the base area of the tank, R be the rate of flow
- ODE: AL = —R
misc
triangle inequality
la+0b] < la| + |b| foralla,b € R

binomial theorem

2”: (Z> PR

k=0
=a™ + (1) nflb_;'_ ( n )ab”71 + b

(a+b)"

where the binomial coefficient is given by
ny __ !
(k) = k!(:—k)!

factorisation

n_pn — ((1— )( n—1 +a 2b+ _;'_ab'an _|_b7L71)
ad — b3 = (afb)(a + ab + b?)
a’® + b3 = (a+b)(a® — ab + b?)

misc
«Vz € (0, F),sinz <z < tanz
. — tan 6
sinf = V/tan2 60+1
differentiation
f(z) f'(z)
tanx sec? x
cscx —cscxcotx
sec T secx tan x
cotx —csc?x
G — f'(x)
sin lf(l’) N TR |f(z)|<1
—1 =@
cos™" f(z) e f@l<t
-1 S ()
an™" (@) o
-1 __ @
cot™ /(@) EE O
-1 f(=)
e (@) @I @P-1
—1 _ I ()
se” (@) 1@V @E-1
integration
f(z) S f(z)
tanx In(secx), |=| < T
cot In(sinz),0 <« <=
cscx | —In(escx+cotx),0<a<n
sec T In(secz + tanx), |« < T
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