Self Assignment: Vector Calculus

2024

1 Introduction

In this document, we will cover Vector calculus and other topics related to it. Vector Calculus plays a key role in fields such as computer science, physics, and engineering, especially when dealing with 3D space and multidimensional functions. We will cover three fundamental operations: Gradient, Divergence, and Curl. Each of these is essential for understanding the behavior of vector fields.

2 Gradient

The **gradient** of a scalar field f(x, y, z) is a vector field that points in the direction of the greatest rate of increase of the function and whose magnitude is the rate of that increase. It is denoted by ∇f or grad f.

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$$

2.1 Example

Consider the scalar field $f(x, y, z) = x^2 + y^2 + z^2$. The gradient is computed as:

$$\nabla f = (2x, 2y, 2z)$$

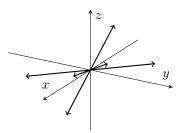
The gradient at the point (1, 1, 1) would be:

$$\nabla f = (2, 2, 2)$$

This shows that at the point (1, 1, 1), the function increases most rapidly in the direction of the vector (2, 2, 2).

2.2 Visualization

The gradient can be visualized as arrows pointing outwards from points on the surface of a 3D function. Below is an illustration of the gradient field for $f(x, y, z) = x^2 + y^2 + z^2$.



3 Divergence

The **divergence** of a vector field $\mathbf{F} = (F_x, F_y, F_z)$ measures the rate at which "stuff" expands out of a point. In mathematical terms, it is the scalar field given by:

$$\nabla \cdot \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$

3.1 Example

Let $\mathbf{F}(x, y, z) = (x^2, y^2, z^2)$. Then the divergence is:

$$\nabla \cdot \mathbf{F} = 2x + 2y + 2z$$

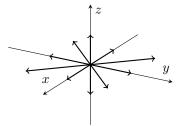
At the point (1, 1, 1), the divergence is:

$$\nabla \cdot \mathbf{F} = 2(1) + 2(1) + 2(1) = 6$$

This means the vector field is "expanding" outwards at this point with a rate of 6.

3.2 Visualization

Divergence can be visualized as the rate at which vectors spread out from a point. A positive divergence indicates outward flow, while negative divergence indicates inward flow. Below is an illustration of a vector field with positive divergence.



4 Curl

The **curl** of a vector field $\mathbf{F} = (F_x, F_y, F_z)$ represents the tendency of the field to rotate around a point. It is denoted by $\nabla \times \mathbf{F}$ and is given by:

$$\nabla \times \mathbf{F} = \left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}, \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}, \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y}\right)$$

4.1 Example

Let $\mathbf{F}(x, y, z) = (-y, x, 0)$. Then the curl is:

$$\nabla \times \mathbf{F} = (0 - 0, 0 - 0, 1 - (-1)) = (0, 0, 2)$$

At any point in the plane, the curl is (0, 0, 2), which indicates that the vector field has a constant rotation around the z-axis.

4.2 Visualization

Curl can be visualized as the rotation of vectors around a point, similar to how fluid might circulate in a whirlpool. Below is an illustration of a vector field with a non-zero curl.

