Problems for Calculus

October 28, 2024

Easy Problems

1. Sketch the graph of f(x) = x® — 3x. Use the first and second derivatives
to determine the intervals where the function is increasing, decreasing,
concave up, and concave down.

f'(x) = 32% =3, f’(2) = 6z

Increasing on = > 1, decreasing on x < —1, concave up for > 0, concave
down for x < 0.
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2. Find the derivative of the piecewise function:
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4. Find the critical points of f(z) = L; — 2 and determine if they are minima
or maxima.

f'(z) = 2* — 1 gives critical points at = 1 and 2 = —1.

5. Solve [(2z® — 4z) du.
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Medium Problems

1. Differentiate f(z) = 2*In(z) using the product rule.

fl(z) = 2zIn(z) + 2

2. Use the chain rule to differentiate f(z) = e 1,

7'(z) = 20e”*

3. Solve lim,_,o tar;(z) using the small-angle approximation.
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. Solve the integral foz(:c?’ — 2x) du.
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5. Find the inflection points of f(z) = z* — 422.

2
f"(x) = 122 — 8, inflection points at z = +
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Hard Problems

1. Evaluate the integral fooo e da (Hint: Use the Gaussian integral for-
mula).
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Follow-up Question: Evaluate the integral ffooo e da using the same
technique.
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2. Find the maximum and minimum of f(z) = In(z) — z# on the interval

[0.1,2].
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Max at x = 37 Min at =z = 2

Follow-up Question (hard): Find the points of inflection of f(z) =
In(z) — 2.

1
f(x) = ——5—2 = No inflection points since the concavity does not change.



Follow-up Question (easy): What is the behavior of f(z) as z — 0T
and as x — oo?

lim f(z) = —o0,  lim f(z)=—o0

3. Find the solution to the differential equation Z—Z =y + 2.
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y = €z1;2/2(C+ 2)

Follow-up Question (medium): Solve the same differential equation
but with the initial condition y(0) = 3.

y = 651:2/2(1 + 2)

4. Compute the limit lim,_,q mfsxi?(w)
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z—tan(z)
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Follow-up Question (easy): Compute lim,_,o
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5. Solve the following integral [, mm(—f) dz.
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Follow-up Question (hard): Use integration by parts to evaluate [, @) go.
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Additional Questions

1. Prove that the function f(x) = 2® — 3z has exactly three real roots.

f(x) = z(z* = 3), roots are at = = 0, +v/3
x
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3. Differentiate f(z) = S;gfl)

2. Compute limy o (1+ 1)

22 4+ 1 cos(z) — 2z - sin(x)
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4. Find the volume of the solid obtained by rotating the region bounded by
y =22 and y = 4 around the z-axis.
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5. Determine the radius of convergence of the series > | 7.
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