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1 Preliminary Algebra
1.1 Coordinate Geometry
Equation of a line
Yy =mx-+c
Equation of a circle
(=) (g = k) =7

Equation of a parabola

y—k=a(x—h)? r—h=aly—k)?

Equation of an ellipse

Equation of a hyperbola

(x—h)? (y—k?

a2 2 L

1.2 Logarithms and Exponentials

Properties of Exponentials
a*a™ = a"tm 2—; =a" "
(ab)" = a"b" <%> Z_T;)n
= (-

Properties of Logarithms

log,a =1 log,1=0
1
(log, b)(log; ¢) = log, c log, b= 1 o
log,(zy) = log, x + log, y log, (f) = log,z —log, y
y



1.3 Binomial Expansion

o n! _(n
G = Klin— k)l — (k)

Also,
"Co="C,=1
"(]1 = nCn_l =n
"Cp ="Chi

For a binomial expression raised to the power n:
(x+y)" Z Cha™ Fyk

Pascal’s Triangle

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 3 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1

Commonly Factored Polynomials

-y = (r—y)(z+y)
r+y)? = 2+ 2xy+ ¢’
(r—y)? = 2 =2y +y’
=y = (v —y)(@® +ay+y?)
Yyt = (x+y)(x —xy+y)
(x+y)? = 2%+ 32%y +3zy* + 42
(x —y)? = 23—32% +3zy® — 3



2 Trigonometry

2.1 Common Values and the Unit Circle

g° 0° 30° 45° 60° 90°

o« 0§ I 3 3
simf 0 4 & 1
cosf 1 \/75 \/Li % 0
tanf 0 = 1 3 N/D

Table 1: Commonly used trigonometric values. Refer the [Unit Circle

2.2 Pythagorean Identities

sin?z +cos’z =1 sec’xr —tan’z =1

csc?x —cot’r =1

2.3 Double Angle Formulae

2t
sin (2x) = 2sinx cos x tan (2z) = Lﬁ
1 —tan“x
cos (2r) = 2cos’z — 1
= cos’x —sin’x
=1-2sin’z
2.4 Sum and Difference Formulae
sin (x £ y) = sinx cosy + coszsiny cos (x £ y) = cosxcosy Fsinxsiny

tanx + tany
1 Ftanztany

tan (x £ y) =

arcsin x £ arcsiny = arcsin (zy/1 — y? £ yvV1 — 22)

arccos & + arccos y = arccos (zy F /(1 — 22)(1 — y2))
rty )

+ xy

arctan x + arctany = arctan (



2.5 Sum to Product Formulae

. . . (r+y r—y . . rTry\ . (T—Y
sinx +siny = 2sin | ——— ) cos sinx —siny = 2cos [ ——— | sin
2 2 2 2
rty r—Yy . (frx+y\ . [T—yY
cos T + cosy = 2cos — COS 5 COST — CcOsy = —2sin — sin 5

2.6 Product to Sum Formulae

sin(x + ) sin(z — y) = sin®z — sin®y cos(z + y) cos(z — y) = cos* x — sin’y

2.7 Laws of Sines and Cosines

Figure 2: AABC in a circumscribed circle of circumradius r

Law of Sines
sin A B sin B B sin C' B 1

a b c 2r



Law of Cosines

b2 42— g2
a® = b* + % — 2bccos A A=cos™! rre-o
2bc
222
b = a* + ¢* — 2accos B A = cos™* (L)
2ac
2 p2_ 2
& =a®+b* —2abcosC C =cos™! rrr-c
2ab
2.8 Inverse Trigonometric Functions
sin'(—2) = —sin"'z cos ' (—x) =7 —cos ', lz] <1
tan '(—2) = —tan 'z cot H(—z) =7 —cot 'z, reR
1 1
cscta = sin™! (—) sec 'x = cos! (—) : lz| > 1
x x
e ()
cot™" x = tan -, x>0
x
-1 (1
cot”™ z =m+ tan —), <0
x
sin 'z +cos Tl w = g, lz] <1
1 1 m
csc X + sec z=g, lz| > 1
2.9 Trigonometry in the Complex Plane
Euler’s Formula .
re® = r(cos + isin )
De Moivre’s Formula
(cosf + isinf)" = cos (nd) + isin (nh)
Exponential Definition of Trigonometric Functions
cos (ix) = % sin (ix) = z‘% tan (ix) = i%
Exponential Definition of Hyperbolic Functions
cosh () = L&) sinh (z) = (& =) fanh () = & — )
2 2 (e® 4+ )



Relationship between hyperbolic and trigonometric functions

coshx = cosix cosx = coshix

isinh x = sinix isinx = sinh iz
2.10 Hyperbolic Identities
csch?x + coth = 1

sech?x + tanh®’z = 1
sinhz + coshz = ¢*

cosh?z — sinh®z = 1
cosh (2z) = cosh® 2 4 sinh®z

sinh (2x) = 2sinh z cosh

2.11 Inverse Hyperbolic Functions
cosh™ o =In(V1+ 22+ ) sinh™' 2 =In (V1 + 22 + )

1
tanh 'z = In T
1—2z
1. 14«2
=—In
2 11—z

3 Vector Algebra

Figure 3: Addition of two vectors using Parallelogram Law

3.1 Scalar Product

Defintion 1 (Dot Product). For two vectors a and b, the scalar product, or the dot product,

is defined as:
a-b=lallb|cos®

= (alt)



Where 0 is the angle between the two vectors.
If a = 210+ y1) + 21k and b = 290 + yoj + 2ok then,

~

a-b=(r122)i 4+ (y1y2)] + (z122)k

If a L b, then a-b=0and, if a | b, then a-b = |al||d]

3.2 Vector Product

Defintion 2 (Cross Product). For two vectors a and b, the vector product, or the cross
product, is defined as:

a x b=al|b|siné
= [b){al
Where 0 is the angle between the two vectors.
Ifa=xi+y)+ zll% and b = o0 + Y2 + Zgl% then,
Pk
axb=|ry y1 =

Ty Y2 Zz2

The resultant is a vector a x b that is mutually perpendicular to both, a and b.

3.3 Triple Products
Scalar Triple Product

ap a2 as
[abecl=(axb)-c=a-(bxc)=|by by b3
Ci Cy C3

3.4 Equations of lines, planes and spheres

Equation of a line In Figld] the vector r can be written as r = a+ Ab



Figure 4: The equation of a line. The vector b is in the direction AR and Ab is the vector
from A to R.

General Equation of a line:

r—T Y- Z2—4a
a b c
Parametric Equation of a line:

r=ux+ at y =1y + bt z=2z1+ct

Where t is a parameter

Equation of a Plane

4 Limits

4.1 Precise Definition of a Limit

Defintion 3 (Limit of a function). Let f(x) be a function defined on an open interval around

xo. We say that the limit of f(x) as x approaches xq is L, i.e. im,_,,, f(x) = L, if for every
e > 0 there exists 6 > 0 such that for all x

O0<|z—mo| <d = |f(z)—L|<e.

4.2 Common Limits

EN\™ 1\" 1\* 1
lim (1 + —> .. lim (1 + —) =e lim <1 — —) ==
T—00 €T T—00 €T T—r00 €T €

) x \* 1 . 1 . a®* —1

lim =— lim (1+2)* =e lim =Ina
z—o00 \ T + k ek x—0 z—0 x
lim sinx:1 hmsinax:g hml—cosx:O
=0 I z—0 bx b z—0 T

10



4.3 L’Hopital’s Rule
Theorem (L’Hopital’s Rule). Suppose f and g are differentiable functions such that
1. ¢'(x) # 0 on an open interval I containing a;
2. lim,,, f(x) =0 and lim,_,, g(z) = 0, or lim,,, f(x) = £oo and lim,_,, g(z) = £oo;

/ :Ez)) ezists.

3. lim,_,,

Q

Then )
lim /(@) = lim 1)

z—a g(m z—a g’(x)'
5 Sequences and Series

5.1 Common Summation Formulae

ZZ_ n+1 ZiQ:n(n+l)(2n+l)

5 ni(n+1 i
Y=t Y-

5.2 Geometric Series
The Geometric Series

S:Zarnza+ar+ar2+ar3...

n=0
Is convergent if |r| < 1 and,
g__o
17
5.3 Power-Series
The power series
1
((p) = > "

converges for p > 1

11



5.4 Series Convergence Tests

5.5 Common Power Series

T - x" Iz x3
DU R
: _ EOO (_1)71 on+1 ZL‘3 $5
Slnl’—nzomx —x—g—i—y—
— - (_1)71 2n :Uz 'IA
””‘}%@mx ST

6 Differential Calculus

6.1 Formal Definition of a derivative

Defintion 4 (Limit Definition of a derivative). The derivative of a continuous function f(z)
on an interval I is defined as the limit of the difference quotient

o) — i T D)~ @)

Az—0 Ax

Where Az is a small change in x

6.2 Derivative Rules and Properties

The differntial operator is a linear operator, i.e.
(f(x) £ g(x))" = f(x) £ ()
(e f(a) =c- f(x)

Product Rule

Quotient Rule:

(ﬁ@):f@%m@—¢@%ﬂ@
g9()

Chain Rule
(f(g9(@)) = f'(g(x)) - ¢'(2)

Theorem (Leibnitz’ Theorem). For a function f(z) = u(x)v(x), the n'* derivative, f(x)

18 given by

0 = 37 ey

r=0

12



6.3 Common Derivatives

d . (1 ) . d 1 1

—a” = (lna)a —log x =

dx dz 8a zlna

d . d ) ; 9

— = CO0S — COST = —S — ta = sec

e max T I T mazx . nx T

d d 9

—cscx = —cscxrceota —secxr = secxtanx —cotx = —csc’x

dx dx dx

d sin ™ ! d cos ! ! d tan~! !

—sin = —— — r=——— —tan T x =

dx V1 — 22 dz N dx 1+ 22
secty = ! d cscta = ! cot lx = !

dz _x x2 —1 dx - xv/r2 —1 dx N 1+ 22

6.4 Mean Value Theorem

Theorem (Mean Value Theorem). If a function f(z) is continuous and differentiable in the
range (a,c), then there exists atleast one value b, a < b < ¢, such that

PNICEO)

c—a
6.5 Applications of Derivatives
6.5.1 Tangent to a Curve
Tangent to a curve f(z) at a point a:

d

af (2)

For a straight line passing through points (x1,y1) and (xa,y2), the slope, m, is constant and
is calculated by:

r=a

Yo —
To — X1
Where 6 is the angle of the line with the x-axis

m =tanf =

6.5.2 Analysis of a Curve

Critical Points 1z = a is a critical point of f(z) if f'(a) =0 or f'(a) doesn’t exist.

Slope

1. f(z) is increasing on an interval I if f’(x) > 0, i.e. it has a positive slope on that
interval.

2. f(x) is decreasing on an interval I if f'(z) < 0, i.e. it has a negative slope on that
interval.

3. f(z) is constant on an interval I if f'(z) = 0.

13



Concavity
1. f(x) is concave up on an interval I if f”(x) > 0.

2. f(z) is concave down on an interval I if f”(z) < 0.
Inflection Points 2z = a is an inflection point of f(x) if the concavity changes at f(a).

Extrema f(a) is a stationary point on an interval [ if f'(a) = 0.
1. If f”(a) > 0, then f(a) is a local minimum.
2. If f"(a) <0, then f(a) is a local maximum.

3. If f"(a) = 0, then the second derivative test fails.

6.5.3 Taylor Polynomials

Defintion 5 (Taylor Polynomial). Let f(x) be a real-valued function that is infinitely dif-
ferentiable at x = xy. The Taylor series expansion for the function f(z) centered around the

point x = xq is given by

ny (o (&= o)"
> 1 )(flfo)T)

n=0

Where f™(x4) is the n™ derivative of f(x) at x = x.

6.6 Partial Derivatives
7 Integral Calculus

7.1 Fundamental Theorem of Calculus

Theorem (First Fundamental Theorem of Calculus). If f is continuous on [a,b], then the
function defined by

S(x) = / £(t) dt

is continuous on |a,b] and differentiable on (a,b), and S'(x) = f(x).

Written in Leibniz notation,

%l%@wzﬂm

Theorem (Second Fundamental Theorem of Calculus). If f is a continuous function on
la,b], then

/f@szﬂw—F@

where F' is the anti-derivative of f, i.e. F' = f.

14



7.2 Common Antiderivatives and Integrals

Antiderivatives
1 1 1
—dz=Inlz|+c dz = —Injax 4+ b| + ¢
T ar+b a
1 . ) 1 2
cosadr = —sinax + ¢ sinardx = ——cosax + ¢ sec” zdx =
a a

8 Laplace and Fourier Transforms

8.1 Laplace Transform

Defintion 6 (Laplace Transform). The Laplace transform of a function f(t), defined for all
real numbers t > 0, is the function F(s), which is a unilateral transform defined by

F(s) = /OOO f(t)e "t dt

where s is a complex number frequency parameter
s = o + 1w, with real numbers o and w.

8.2 Common Laplace Transforms

L) = é £e) - - i - L(t") = Sﬁl

' a S ) 2as
L(sin (at)) = P L(cos (at)) = 212 L(tsin (at)) = m
L(tcos (at)) = m L(sinh (at)) = 52 _ g2 L(cosh (at)) = 2_ a2
£(O(t— ) = e £V = 2o L(F(5) = sF(s) - F(0)

L) = $"F(s) = "L f(0) = 2 (0) - = 5/72(0) = "4(0)

15



Figure 1: Unit Circle
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