计算y=x y = \sqrt{x}y=x 在区间 [0,4][0,4][0,4] 绕x轴旋转的体积
求 y=x3y = x^3y=x3 在 [0,2][0,2][0,2] 绕y轴旋转的体积
求由 y=xy = xy=x 和 y=x2y = x^2y=x2 围成的区域绕x轴旋转的体积
计算 y=23x3/2y = \frac{2}{3}x^{3/2}y=32x3/2 在 [0,3][0,3][0,3] 的弧长
给定参数方程:{x=t2y=t3(0≤t≤1)\begin{cases} x = t^2 \\ y = t^3 \end{cases} \quad (0 \leq t \leq 1){x=t2y=t3(0≤t≤1)求曲线长度
使用圆盘法:
V=π∫04(x)2dx=π∫04xdx=π[x22]04=8πV = π\int_{0}^{4} (\sqrt{x})^2 dx = π\int_{0}^{4} x dx = π\left[\frac{x^2}{2}\right]_0^4 = 8π V=π∫04(x)2dx=π∫04xdx=π[2x2]04=8π
使用壳层法(反函数 x=y1/3x = y^{1/3}x=y1/3):
V=2π∫02x(x3)dx=2π∫02x4dx=2π[x55]02=64π5V = 2π\int_{0}^{2} x(x^3) dx = 2π\int_{0}^{2} x^4 dx = 2π\left[\frac{x^5}{5}\right]_0^2 = \frac{64π}{5} V=2π∫02x(x3)dx=2π∫02x4dx=2π[5x5]02=564π
交点 x=0,1x=0,1x=0,1,Washer法:
外半径 R=xR = xR=x,内半径 r=x2r = x^2r=x2
V=π∫01(x2−x4)dx=π[x33−x55]01=2π15V = π\int_{0}^{1} (x^2 - x^4) dx = π\left[\frac{x^3}{3} - \frac{x^5}{5}\right]_0^1 = \frac{2π}{15} V=π∫01(x2−x4)dx=π[3x3−5x5]01=152π
导数 f′(x)=x1/2f'(x) = x^{1/2}f′(x)=x1/2
L=∫031+xdx=[23(1+x)3/2]03=143L = \int_{0}^{3} \sqrt{1 + x} dx = \left[\frac{2}{3}(1+x)^{3/2}\right]_0^3 = \frac{14}{3} L=∫031+xdx=[32(1+x)3/2]03=314
dxdt=2t, dydt=3t2\frac{dx}{dt} = 2t,\ \frac{dy}{dt} = 3t^2 dtdx=2t, dtdy=3t2L=∫01(2t)2+(3t2)2dt=∫01t4+9t2dt=127(133/2−8)L = \int_{0}^{1} \sqrt{(2t)^2 + (3t^2)^2} dt = \int_{0}^{1} t\sqrt{4 + 9t^2} dt = \frac{1}{27}(13^{3/2} - 8) L=∫01(2t)2+(3t2)2dt=∫01t4+9t2dt=271(133/2−8)
导数 f′(x)=−xr2−x2f'(x) = \frac{-x}{\sqrt{r^2 - x^2}}f′(x)=r2−x2−x
A=2π∫−rrr2−x2⋅1+x2r2−x2dx=2πr∫−rrdx=4πr2A = 2π\int_{-r}^{r} \sqrt{r^2 - x^2}·\sqrt{1 + \frac{x^2}{r^2 - x^2}} dx = 2πr\int_{-r}^{r} dx = 4πr^2 A=2π∫−rrr2−x2⋅1+r2−x2x2dx=2πr∫−rrdx=4πr2
Disk法:V=π∫13(y)2dy=π[y22]13=4πV = π\int_{1}^{3} (\sqrt{y})^2 dy = π\left[\frac{y^2}{2}\right]1^3 = 4πV=π∫13(y)2dy=π[2y2]13=4πShell法:V=2π∫13x(3−x2)dx=2π[3x22−x44]13=4πV = 2π\int{1}^{\sqrt{3}} x(3 - x^2) dx = 2π\left[\frac{3x^2}{2} - \frac{x^4}{4}\right]_1^{\sqrt{3}} = 4π V=2π∫13x(3−x2)dx=2π[23x2−4x4]13=4π
学习提示: