CS2030S cheatsheet (1)

TYPES

¢ Sisasubtypeof T, s <: = if a piece of code written for
variables of type s can also be safely used on variables of type

T .

e widening conversion = a type s can be put into a variable of
type o if s <: 7.

e narrowing conversion = requires typecasting
e reflexive - = <: =
e transitive-if s <: r and 7 <: v, then s <: v

® 5 instanceof T returnstrueif s <: ¢

primitive types

byte <: short <: int <: long <: float <: double

char <: int

Liskov substitution principle
o if s <: 1, then

e any property of = should also be a property of s. (includes
fields, methods)

e an object of type = can be replaced by an object of type s
without changing some desirable property of the program.

¢ VIOLATION: subclass changes the behaviour of the superclass -
<specified> property no longer holds.

¢ places in the program where the superclass is used cannot
be replaced by the subclass

RUN-TIME vs COMPILE-TIME TYPES

Circle c = new ColouredCircle(p, 0, red
// ColouredCircle <: Circle

e compile-time type: circie

¢ run-time type: colouredcircie
OOP PRINCIPLES

encapsulation
e composite data types
¢ abstraction barrier - hide information & implementation

e orivate attributes, puniic methods

inheritance
¢ ‘"is-a" relationship = extenas (subtyping)

¢ vs "has-a" relationship - use composition

tell, don't ask

¢ don't make assumptions the implementation

¢ aclass should be agnostic of another class

polymorphism

¢ dynamic binding - method invoked is determined at runtime

method overriding
¢ same method signature (method name + type of arguments)

e dynamic polymorphism

method overloading

¢ same method name, diff parameter types/number of
parameters

¢ static polymorphism

jovyntls

ABSTRACT CLASSES

abstract class Shape

e cannot be instantiated
e aconcrete class cannot have abstract methods

¢ as long as one method is abstract, the whole class is
abstract

¢ an abstract class can have concrete and/or abstract methods

INTERFACE

interface getAreable
// methods are public and abstract by default
double getArea

e abstract class

e concrete classes implementing the interface have to
implement the body of the methods

e if class ¢ implements interface :,then c <: 1.

¢ aclass can extend multiple interfaces

class C implements A, B

¢ an interface can extend multiple interfaces

interface I extends A, B

¢ an interface cannot implement other interfaces (abstract!!)

this - reference variable that refers to the instance



CS2030S cheatsheet (2)

WRAPPER CLASS

Integer i = new Integer(2

int j = i.intValue
(un)boxing
int i =1 // i is an int

Integer j = i // j is an Integer
int k = j // k is an int

JAVA

access modifiers
private = only within the class
aefault = only within the package

protected = ONly within the package or outside the package through
the child class

public —> everywhere

£inal keyword
e :ina1 class = cannot be inherited from

e rina1 method = cannot be overridden

CASTING

// Circle <: Shape <: GetAreable
GetAreable findLargest (GetAreable array

GetAreable ga = findLargest(circles // ok
Circle cl = findLargest(circles // error
Circle c2 = (Circle) findLargest(circles // ok

¢ only cast when you can prove that it is safe

variance

Let C(T) be a complex type based on type T'. The complex type
Cis:

« covariantif S <: T implies C(S) <: C(T")
« contravariant if S <: T implies C(T) <: C(S)
« invariant if C is neither covariant nor contravariant

(Java array is covariant)

jovyntls

EXCEPTIONS

try
new Circle(new Point(1l, 1 0
// everything afterwards is skipped
System.out.println("This will never reach"
catch (IllegalException e
// runs if there is an exception
finally

// always runs

¢ exception will be passed up the call stack until it is caught

e after exception is caught: everything else proceeds normally

throw €xceptions

public Circle(Point c, double r) throws IllegalArgumentException
if (r <0

throw new IllegalArgumentException("radius cannot be negative."

// anything from here will not run if r<0

* throw Causes method to immediately return



CS2030S cheatsheet (3)

GENERICS
¢ allow classes/methods (that use reference types) to be defined
without resorting to using the Object type.

¢ ensures type safety - binds a generic type to a specific type
at compile time

oV errors will be at compile time instead of runtime

¢ generics are invariant in Java

generic class

class Pair<S extends Comparable<S T> implements Comparable<Pair<S, T
class DictEntry<T> extends Pair<String,T

generic method

public static <T> boolean contains(T arr, T obj
// to call a generic method:
A.<String>contains(strArray, "hello"

¢ type parameter <r- is declared before the return type

note

B implements Comparable<B

A extends B

A <: B <: Comparable<B

Comparable<A> INVARIANT Comparable<B

Comparable<A> <: Comparable<? extends B

TYPE ERASURE

type erasure

e at compile time, type parameters are replaced by object or the
bounds (eg T extends Shape IS replaced by Shape )

suppress warnings

® suppresswarnings €an only apply to declaration

"unchecked"

T a= (T new Object[size

this.array = a

WILDCARDS

upper-bounded: 2 extenas

e covariant - if s <: ©,then a<z extends s> <! a<? extends T>

lower-bounded: 2 super

e contravariant - if s <: =, then a<z super 7> <! a<? super s>

unbounded: -

e array<2> is the supertype of all generic array<r-

PECS PRINCIPLE

Producer ecxtenas ; Consumer super

e = - if you need to produce T values, declare rist<? extends

e cs - if you need to consume T values, declare tist<? super >

jovyntls

RAW TYPES

e ageneric type used without type arguments

e only acceptable as an operand of instanceos

TYPE INFERENCE

e ensures type safety -> compiler can ensure that wist<myoni> holds
objects of type myonj at compile time instead of runtime

® <2 super Integer> = inferred as object

® <7 extends Integer> = iNferred as tnteger

diamond operator: <>

Pair<String,Integer> p = new Pair

¢ only for instantiating a generic type - not as a type
¢ generic methods: type inference is automatic

® a.contains() NOt A.<>contains()

constraints for type inference
¢ target typing - the type of the expression (e.g. shape )
e type parameter bounds = <t extends cetareables

e parameter bounds = array<circie> <: aArray<? extends 1>,S0 T :>

Circle

public static <T extends GetAreable> T findLargest(Array<? extends T> array
Shape o = A.findLargest(new Array<Circle>(0



