CS2030S cheatsheet (1)

TYPES

e Sisasubtypeof T, s <: ¢ if a piece of code written for
variables of type = can also be safely used on variables of

type s.

e widening conversion = a type s can be putintoa
variable of type = if s <: =.
e narrowing conversion = requires typecasting
¢ reflexive- r <: =
e transitive -if s <: r and © <: v, then s <: v

® 5 instanceof T returnstrueif s <: ¢
primitive types

byte <: short <: int <: long <: float <: double

char <: int

Liskov substitution principle
o if s <: r,then

e any property of r should also be a property of s.
(includes fields, methods)

e an object of type = can be replaced by an object of type
s without changing some desirable property of the
program.

¢ VIOLATION: subclass changes the behaviour of the
superclass - <specified> property no longer holds.

e places in the program where the superclass is used
cannot be replaced by the subclass

this - reference variable that refers to the instance

RUN-TIME vs COMPILE-TIME TYPES

Circle ¢ = new ColouredCircle(p, 0, red);
// ColouredCircle <: Circle

e compile-time type: circie ; run-time type: colouredcircie
OOP PRINCIPLES

encapsulation
e composite data types
e abstraction barrier - hide information & implementation

® private attributes, public methods

inheritance
e "is-a" relationship = extenas (subtyping)

¢ vs "has-a" relationship - use composition

tell, don't ask
¢ don't make assumptions the implementation

¢ aclass should be agnostic of another class

polymorphism
¢ dynamic binding - method invoked is determined at
runtime
method overriding (dynamic polymorphism)
¢ same method signature
¢ method name, type/number/order of arguments
¢ method descriptor = method signature + return type
(@override)
method overloading (static polymorphism)

¢ same method name, diff parameter types/number of
parameters

@ jovyntls

ABSTRACT CLASSES

abstract class Shape { ... } // cannot have fields

¢ cannot be instantiated
¢ aconcrete class cannot have abstract methods

e aslong as one method is abstract, the whole class is
abstract

e an abstract class can have concrete and/or abstract
methods

INTERFACE ("can-do")

interface getAreable {
// methods are public and abstract by default
double getArea();

}

¢ concrete classes implementing the interface have to
implement the body of ALL the methods

e if class ¢ implements interface 1, then c <: 1.

¢ aclass can extend multiple interfaces
class C implements A, B { ... }
¢ an interface can extend multiple interfaces

interface I extends A, B { ... }

¢ an interface cannot implement other interfaces
(abstract!!)

¢ may have default implementation - aefauit

CS2030S cheatsheet (2)

WRAPPER CLASS

e immutable, may be less efficient

Integer i = new Integer(2);
int j = i.intValue();

(un)boxing

int i = 1; // i is an int

Integer j = i; // j is an Integer

int k = j; // k is an int

MODIFIERS

® private = Only within the class
e aerauit —> only within the package

e orotected = ONly within the package or outside the package
through the child class

e oublic > everywhere
e :ina1 variable - can only be assigned once
e :ina1 class = cannot be inherited from

e rina1 method = cannot be overridden

CASTING

// Circle <: Shape <: GetAreable

GetAreable findLargest(GetAreable[] array) { ... }
GetAreable ga = findLargest(circles); // ok
Circle cl = findLargest(circles); // error
Circle c2 = (Circle) findLargest(circles); // ok

¢ only cast when you can prove that it is safe

variance

Let C(T) be a complex type based on type T'. The complex
type C'is:

« covariantif S <: T implies C(S) <: C(T)
« contravariantif S <: T implies C(T") <: C(S)
« invariant if C is neither covariant nor contravariant

(Java array is covariant - S <: T = S[] <: T'[))

public protected private abstract default static final
transient volatile synchronized native strictfp

@ jovyntls

EXCEPTIONS

try {
new Circle(new Point(l, 1), 0);
// everything afterwards is skipped
System.out.println("This will never reach");

-~

catch (IllegalException e) {

// runs if there is an exception
finally {

// always runs

-~

¢ exception will be passed up the call stack until it is caught

e after exception is caught: everything else proceeds normally

class MyException extends IllegalArgumentException {
MyException(String msg) { super(msg); }
}

throw exceptions

import java.lang.IllegalArgumentException
public Circle(Point c, double r) throws IllegalArgumentException {
if (r < 0) {
throw new IllegalArgumentException("radius cannot be negative."

}

// anything from here will not run if r<0

e throw Causes method to immediately return

overriding a method that throws exception Ej: must
thow exception Ey such that E; <: Ey (LSP)

CS2030S cheatsheet (3)

GENERICS
¢ allow classes/methods (that use reference types) to be defined
without resorting to using the Object type.

¢ ensures type safety - binds a generic type to a specific
type at compile time

« errors will be at compile time instead of runtime

e generics are invariant in Java

generic class

class Pair<S extends Comparable<S>, T>
implements Comparable<Pair<s, T>> {...}
class DictEntry<T> extends Pair<String,T> {...}

generic method

public static <T> boolean contains(T[] arr, T obj) {...}
// to call a generic method:
A.<String>contains(strArray, "hello");

¢ type parameter <r- is declared before the return type

¢ bounded type parameter: public <1 extends Comparable<T>> T £0o(T

t) { ...}

note

B implements Comparable { ... }

A extends B { ... }

A <: B <: Comparable

Comparable<A> INVARIANT Comparable
Comparable<A> <: Comparable<? extends B>

TYPE ERASURE

type erasure

¢ at compile time, type parameters are replaced by object or

the bounds (eg T extends Shape is replaced by Shape)

Integer i = new Pair<String,Integer>("x", 4).foo(); // before

Integer i = (Integer) new Pair("x", 4).foo(); // after

suppress warnings
® @suppresswarnings Can only apply to declaration
@SuppressWarnings ("unchecked")

T[] a = (T[]) new Object[size];
this.array = a;

WILDCARDS

upper-bounded: > cxtenas

e covariant - if s <: 7,then a<z extends s> <! a<? extends T
lower-bounded: > super

e contravariant - if s <: =, then a<z super ™ <! a<? super s>
unbounded: -

e array<z> is the supertype of all generic array<r-

PECS PRINCIPLE

e PE - if you need to produce T values, use rist<? extends 7>
e CS - if you need to consume T values, use rist<? super T

¢ if both producer & consumer - use wildcard <>

jovyntls

RAW TYPES

¢ a generic type used without type arguments

¢ only acceptable as an operand of instanceot

TYPE INFERENCE

¢ ensures type safety > compiler can ensure that vist<nyobi>
holds objects of type nyon; at compile time instead of runtime

® <? super Integer> = inferred aS object

® <? extends Integer> => inferred as Integer

diamond operator: <>

Pair<String,Integer> p = new Pair<>();

¢ only for instantiating a generic type - not as a type
e generic methods: type inference is automatic

® A.contains() NOt a.<>contains()

constraints for type inference
¢ target typing - the type of the expression (e.g. shape)
e type parameter bounds = <1 extends Getareable>

° parameter bounds - Array<Circle> <! Array<? extends T>, SO T :>

Circle

public static <T extends GetAreable> T findLargest(Array<? extends T> arr
Shape o = A.findLargest(new Array<Circle>(0));

CS2030S cheatsheet (4)

IMMUTABILITY

e immutable class - an instance cannot have any visible
changes outside its abstraction barrier

¢ advantage:

¢ save space - share all references until instance needs to
be modified (which will create a new copy)

¢ enable safe sharing of (dependency on) internals
¢ enable safe concurrent execution
¢ to update something :ina1 : explicitly reassign
final class Circle {
final private Point c;
final private double r;

public Circle moveTo(double x, double y) {
return new Circle(c.moveTo(x, y), r);
}
}

e immutable class declared ¢ina1 - prevent overriding &
inheritance

VARARGS

* pass a variable number of arguments of the same type
¢ will be passed to the method as an array of items
® public void of(T... items) {} = items will be T[]

e esafevarargs annotation if o is a generic type

¢ final or static methods/constructors

NESTED CLASSES

¢ can access fields and mehthods of container class (incl.

private)
¢ static nested class - associated with the containing class

¢ can ONLY access static fields/methods of containing
class

¢ inner class (non-static nested class) - associated with an
instance

e can access ALL fields/methods of containing class

qualified this

o differentiate between tnhis of inner class and container
class

class A {
private int x;

class B {
void foo() {
this.x = 1; // error
A.this.x = 1; // ok
}
}
}

ANONYMOUS CLASS
L4 format new Constructor (arguments) { body }
® OrF new (className implements someInterface)(arguments) {
body }

e cannot implement more than one interface

e cannot extend a class and implement an interface at the
same time

* same rules as local classes for variable access

@ jovyntls

LOCAL CLASS

¢ class defined within a method

e can access: class and instance variables from the enclosing
class (use qualified tnis) + local variables of enclosing
method

e can only access variables declared :ina1 or effectively
final

o effectively final - variable does not change after
initialisation

WILL NOT COMPILE if the variables are NOT
effectively finall!

variable capture

when a method returns, all local variables of the
method are removed from the stack

¢ instance of a local class makes a copy of local variables
inside itself

CS2030S cheatsheet (5)

FUNCTIONS
« function - mapping from a domain to a codomain (f : X —
Y)

« referential transparency - if f(x) = y, any y can be
substituted with f(z)

pure function

v’ no side effects (X cannot print/write to file/change value of
arguments/throw exceptions/change other variables)

v’ every input mapped to an output in the codomain
(nu11 is not within the codomain)
v’ deterministic; not dependent on external variables

e must return a value (cannot be void)

immutable class - methods are pure functions

functions as first-class citizens

Transformer<Integer, Integer> square = new Transformer<>() {
@override
public Integer transform(Integer x) {
return x * x;
}
}i

e erunctionalinterface @nnotation (only one abstract method)

@FunctionalInterface
interface Transformer<T, R> {
R transform(T t);

}

LAMBDA FUNCTIONS

Transformer<Integer, Integer> incr = x -> x + 1;
Comparator<String> cmp = (sl, s2) -> sl.length() - s2.length();

METHOD REFERENCE

b StatiC method in a ClaSS (ClassName:staticMethodName)

¢ instance method of a class/interface

(instanceName: :methodName)
¢ instance method of an object of a particular type

(Type: :methodName)
e constructor of a class (ciassyame: :new)
Transformer<T, U> foo = A::foo;

// (%, y) => x.foo(y)
// (%, y) => A.foo(x, y)

A is a type, foo is an instance of that type
A is an instance, foo is an instance method

 at compile time: Java searches for the matching method -
performs type inference to find the method that matches
the method reference.

multiple matches/ambiguous match = compilation
error

CURRIED FUNCTIONS

¢ translate a general n-ary functions to n unary functions
¢ stores the data from the environment where it is defined

¢ closure - a construct that stores a function together
with the enclosing environment

LAZY EVALUATION

delayed computation with lambda functions

@FunctionalInterface
interface Producer<T> { T produce(); }

@FunctionalInterface
interface Task { void run(); }

i=4;
Task print = () -> System.out.println(i);
Producer<String> toStr = () -> Integer.toString(i);

memoization

® US€ Lazy<T>

class Lazy<T> {
T value;
boolean evaluated;
Producer<T> producer;

public Lazy(Producer<T> producer) {
evaluated = false;
value = null;
this.producer = producer;

}

public T get() {
if (!evaluated) {
value = producer.produce();
evaluated = true;
}
return value;

}

Transformer<Integer, Transformer<Integer, Integer>> add = x ->y -> (X + y);

=> add.transform(1l) // gives a Lambda
=> add.transform(l).transform(2) // returns 3
=> increment.transform(3) // returns 4

jovyntls

CS2030S cheatsheet (6)

MONAD

¢ contains a value + side information

¢ o method to initialize the value and side information
e r1atuap Method to update the value & side information
monad laws

1. left identity law

Monad.of (x).flatMap(y —> £(y)) IS equivalentto =(x)

2. right identity law

monad.flatMap(y -> Monad.of(y)) is eqUiValent tO monad

3. associative law

e aka same result regardless of how it's composed

monad.flatMap(x -> f(x)).flatMap(x -> g(x)) is eqUiValent to

monad.flatMap(x -> f(x).flatMap(x -> g(x)))

FUNCTOR

¢ has two methods ot and map

¢ does not carry side information

functor laws

1. preserving identity

functor.map(x -> x) is the same as functor

2. preserving composition

functor.map(x -> f(x)).map(x -> g(x))

is the same as functor.map(x —> g(f(x))

TYPES

InfiniteList<Integer>

evens = InfiniteList.iterate(0, x -> x + 2);

jovyntls

init []
head
-> iterate(next.transform(init), next)
tail
init e
evens
next
InfiniteList<Integer> odds = evens.map(x -> x + 1); // 1, 3, 5,
() => mapper.transform(this.head.produce()) -> init
\
this
init [
- mapper
(\ \ J
head A J head
tail \iM;.'dpﬂﬂdppvr\ il) -> iterate(next.transform(init), next)
. _4 (\
- this PR S init]
odds evens
mapper next
_ ;/‘ e _/
X x + 1 X X % 2
InfiniteList<Integer> altEvens = odds.map(x -> x * 2); // 2, 6, 10, ...
4 2 1
— — ™~
() ->|mapper.transform(this.head.produce()) () —>[mapper.transform(this.head.produce() () - init
N Y (2]
this this
init L]
S N . mapper ,
Ve > mapper Va N ‘
head (& J head . J head
tail () => this.tail.map(mapper) ” tail () - lms.hn':.rap(mppvr) tail () -> iterate(next.transform(init)
\ J 0 = ‘
this S S . this ‘ * init]
altEvens Y odds 9 N evens
mapper g | mapper * | next
J - I\ Y, -
X => X % 2 > x + 1 X => X + 2

, next)

CS2030S cheatsheet (7)

STREAMS

e consumed Only ONCe = 1IllegalStateException if consumed
again

PARALLEL STREAMS

e add .parai1e1() before the terminator or use paralieistrean()
e CANNOT be:

e stateful - result depends on any state that may change
during execution of the stream

e interfering with stream data - one of the stream
operations modifies the source of the stream during
execution of the terminal operation (throws

ConcurrentModificationException)

¢ side effects - use coiiect() for ArrayList to avoid

e associativity - an operation is parallelisable by reducing each

substream and combining them with @ combiner if:
® combiner.apply(identity, i) is equal to

® combiner a@Nd accumulator are associative (Order of
application does not matter)

® combiner aNd accumulator are Compatible (types)

ordered vs unordered source

e ordered - created from iterate / of [ordered collections

(List)

¢ unordered - created from generate [/ unordered collections

(Set)
e aistinct and sortea preserve order (aka stable)
¢ only for FINITE streams!

* use .unordered() to make parallel operations more efficient

* no need to coordinate between streams to maintain order

THREADS (java.lang.Thread)

¢ thread - a single flow of execution
® ew Thread constructor: takes in a Runnable

e rumnable = functional interface with run() method (returns

void)
e _start() —> thread begins execution (returns immediately)
e _isalive() —> returns boolean representing if thread is alive

® hread.currentThread() —> returns reference of current
rUnning Thread (fOr NAaMme: Thread.currentThread().getName())

® hread.sleep(ms) —> pauses execution of current thread

Stream.of (1, 2, 3, 4)
.parallel()
.reduce(0, (x, y) -> {
System.out.println(Thread.currentThread().getName());
return x + y;

)i
e prints:

main

ForkJoinPool.commonPool-worker-5
ForkJoinPool.commonPool-worker-5
ForkJoinPool.commonPool-worker-9
ForkJoinPool.commonPool-worker-3
ForkJoinPool.commonPool-worker-3
ForkJoinPool.commonPool-worker-3

jovyntls

PARALLEL PROGRAMMING

e concurrency - divides computation into subtasks called
threads

e separate unrelated tasks into threads; write each thread
separately

¢ improves utilization of the processor (can switch between
threads)

¢ parallelism - multiple subtasks are truly running at the same
time

¢ parallelism C concurrency

THREADS (cont.)

System.out.println(Thread.currentThread().getName()); // main

Thread myThread = new Thread(() -> {
System.out.print(Thread.currentThread().getName());
for (int i = 1; i < 100; i += 1) {

System.out.print("_");
}
})

myThread.start();

new Thread(() -> {
System.out.print(Thread.currentThread().getName());
for (int i = 2; i < 100; i += 1) {
System.out.print("*");
}
}).start();

while (myThread.isAlive()) {
try {
Thread.sleep(1000);
System.out.print(".");
} catch (InterruptedException e) {
System.out.print("interrupted");

}

CS2030S cheatsheet (8)

CompletableFuture MONAD

L java.util.concurrent.CompletableFuture
* to instantiate:

® .completedFuture(thing)

® _runAsync(Runnable) —> retUrns a completableFuture<void> that Completes when the giVen lambda d

(Runnable) finishes

® _supplyAsync(Supplier<T>) = FetUrnsS a completableFuture<T> that Comp|etes when the given
lambda (Supplier) finishes

® a110f(...), .anyof(...) = returns a complatableruture<voia> that completes when all/any
complete

¢ chaining in the same thread
® _.thenApply(res -> f(res)) — Map
® .thencompose(res —> cr) -> flatMap
® _thenCombine(CF, (thisCF, givenCF) -> ...) —> combine
e with async = given lambda can run in a different thread
e getting result
e _get() = returnsresult (synchronous - blocks until the CompletableFuture completes)
o throws interruptedexception & ExecutionException - Should catch and handle!
e _join() = behaves like set() but no checked exception thrown
e may throw compietionxception - Whoever calls join will handle this
¢ handling exceptions (before join)

L4 .handle((result, exception) -> (exception == null) ? result : somethingElse)

functional interfaces

THREAD POOL

e comprises
1. a collection of threads, each waiting for a task to execute
2. a collection of tasks to be executed (usually queue)
reuse existing threads - avoid overhead cost of creating new threads
e assume queue is thread safe
¢ once freed, a thread runs the next task (dequeued) from the queue
e :ork() —> caller (task) adds itself to the thread pool

* join() = blocks computation until completed

ForkJoinPool
e each thread has a queue of tasks

¢ when athread it idle, it will compute() the task at the head of its queue

* work stealing = if queue is empty, it will compute() a task at the tail of the queue of another

thread
e :ork() —> caller (task) adds itself to the head of the queue of the executing thread
¢ most recently forked task gets executed next
* join() - if the subtask to be joined:
¢ has not been executed > compute() the subtask

¢ has been completed (work stealing) - read the result and return

* has been stolen/is being executed by another thread (work stealing) - current thread finds

another task to work on (from local queue OR steal another task)

should join() the most recently :orx() -ed task first

abstractions

CS2030S java.util.function

BooleanCondition < T >:: test Predicate < T >:: test

Producer < T >:: produce Supplier < T >:: get

Transformer < T,R >:: transform Function < T,R >:: apply

CS20308 Java version
Maybe < T > java.util.Optional < T >
Lazy < T > N/A
InfiniteList < T > | java.util.stream.Stream < T >

Combiner < S,T,R >:: combine BiFunction < §,T,R >:: apply

optional Violates left identity law & function composition preservation

