
CS4231
AY22/23 SEM 2

github/jovyntls

01. MUTUAL EXCLUSION
properties of a mutex algorithm
• mutual exclusion → no more than one process in the critical section
• progress → if one or more process wants to enter and if no one is in the critical
section, then one of them can eventually enter the critical section

• no starvation → if a process wants to enter, it eventually can always enter
• no starvation implies progress!

• ! if a process is in the CS, we always assume that it will eventually exit the CS
• finite number of instructions in the CS

Peterson’s Algorithm

proof
• mutual exclusion: proof by contradiction

• case 1 - turn == 0 when P0 and P1 are both in CS
• then P0 executed turn=1 before P1 executed turn=0
• hence wantCS[0]==false as seen by P1
• but wantCS[0] set to true by P0

• case 2 - turn ==1. symmetric
• progress: proof by contradiction

• suppose both want to enter but none can enter⇒ wantCS must be true for both
• case 1: turn==0. then P0 can enter
• case 2: symmetric

• no starvation: proof by contradiction
• case 1: P0 is waiting, then wantCS[1]==true and turn=1

• P1 in critical region - eventually it exits and sets wantCS[1] to false
• (what if P1 wants to enter again immediately? then P1 will wait first because
wantCS[0]==true and it has set turn==0)

• case 2: P1 is waiting. symmetric

Lamport’s Bakery Algorithm
• for n processes

• get a number first (weak guarantee)
• get served when all lower numbers have been served (sufficient for mutex)

• 2 shared arrays of n elements
• boolean choosing[i] = false ⇒ is process i trying to get a number
• int number[i] = 0 ⇒ the number gotten by process i

• number[i] > 0: process wants to enter CS and that is the queue number

Hardware Solutions
• disable interrupts - to prevent context switch

• do not allow context switch in the critical section
• special machine-level instructions: TestAndSet executed atomically

• × when you design CPU, you want all instructions to roughly be the same
complexity so that your pipelines don’t have bubbles in it

• × degrades performance

Proof: Lamport’s Bakery Algorithm

02. SYNCHRONISATION PRIMITIVES
• solves busy wait problem (wastes CPU cycles)
• synchronisation primitives: OS-level APIs that the program may call

Semaphores
2 variables for each semaphore
• boolean value := true
• queue (of blocked processes) := empty
2 APIs, executed atomically
P() - wait
• if value == false, add self to queue and block
• can context switch to some other process
V() - signal
• set value = true
• wake up one arbitrary process in queue
semaphore for mutex:
• RequestCS() { P(); }
• ReleaseCS() { V(); }

dining philosophers
• one semaphore for each chopstick
• waits-for graph has a cycle⇒ deadlock

• avoid cycles in WFG / have a total ordering

Monitor
• X higher-level/easier to use than semaphore
• every object in Java is a monitor

Hoare-style
• notify() immediately switches from
caller to a waiting thread

• doesn’t use notifyAll()

Java-style
• notify() places a waiter on the ready
thread but signaller continues inside
the monitor

• P0 must acquire monitor lock
• use (while x!=1) to ensure x==1

nested monitor
• wait() only releases the immediate monitor lock

producer-consumer problem
• circular buffer of size n
• single producer, single consumer

• producer places item to the end of the buffer if buffer is not full
• consumer removes item from the head of the buffer if not empty

reader-writer problem
• multiple readers and writers accessing a file

• writer must have exclusive access
• readers may simultaneously access the file

reader-writer (without starvation)
maintain an explicit queue

barber-shop problem 03. CONSISTENCY CONDITIONS

• consistency → specifies what behaviour is allowed when a shared object is
accessed by multiple processes

• “consistent” = satisfies the specification
• historyH → a sequence of invocations and responses ordered by wall clock time

• for any invocationH , the corresponding response must be inH
• each execution of a parallel system corresponds to a history and vice versa

• sequential → an invocation is always immediately followed by its response
• no interleaving (else is concurrent)

• a history H is legal → if all responses satisfies the sequential semantics of the
data type

• sequential semantics → the semantics you would get if there is only one
process accessing that data type

• possible for sequential history to not be legal
• e.g. x=0, P1 writes 1 to x, P2 reads 0 from x (if it were the same thread it
would have been the same value)

• process p’s process subhistory ofH ,H|p→ the subsequence of all events of p
• process subhistory is always sequential

• object o’s object subhistory ofH ,H|o→ the subsequence of all events of o
• two histories are equivalent → if they have the exact same set of events

• same events⇒ implies all responses are the same
• may be different ordering of events (only care about responses)

• process/program order → a partial order among all events
• within the same process, process order is the same as execution order
• no other additional orderings

• sequential consistency → equivalent to some legal sequential history that
preserves process order

• (Lamport’s definition) results are same as in some sequential order & preserves
program order

Linearisability
• stronger than sequential consistency
• external order → a history H induces the “<” partial order among operations

• o1 < o2 ⇐⇒ the response of o1 appears in H before the invocation of o2
• aka o1 finishes before o2 starts

• preserves external order⇒ preserves program order
• linearisability → sequentially consistent (with some legal sequential history S)
and S preserves the external order in H

• (alternate definition) The execution is equivalent to some execution such that
each operation happens instantaneously at some point between the invocation
and response

• for every operation in the execution, you can find a linearisation point

between the invocation and response event
• linearisable⇒ sequentially consistent

local property
• linearisability is a local property

• H is linearisable ⇐⇒ for any object x,H|x is linearisable
• useful because you can reason about objects instead

• sequential consistency is not a local property
• H may not be sequentially consistent, but H|x and H|y can be sequentially
consistent

proof: linearisability is a local property
• using a directed graph: directed edge from o1→ o2 if

• o1 and o2 are on the same object x and o1 is before o2 when linearisingH|x
(o1→ o2 due to obj)

• o1 < o2 in external order (o1→ o2 due toH)
• any topological sorting of the graph gives us a legal sequential history S
• any cycle must be composed of

• edges to some object x (≈ 1 edge since H|x is equivalent S with a total order)
• edges due to some H (≈ 1 edge since partial order induced by H is transitive)
• edges due to some object y (≈ 1 edge)
• edges due to some H (≈ 1 edge)

Consistency definitions for registers
• register → ADT: a single value that can be read and written

• atomic → if the implementation always ensures linearisability of the history
• sequentially consistent → if the implementation always ensures sequential
consistency of the history

• regular → when a read
• not overlap with any write, the read returns the value written by one of the
most recent writes

• overlaps with one or more writes, the read returns the value written by one of
the most recent writes OR the value written by one of the overlapping writes

• safe → if the implementation always ensures that
• when a read does not overlap with any write, it returns the value written by
one of the most recent writes

• when a read overlaps with one or more writes, it can return anything
• ! atomic⇒ regular⇒ safe
• regular 6⇒ sequentially consistent; sequentially consistent 6⇒ regular

04. MODELS & CLOCKS
• process can perform 3 kinds of atomic events/actions

• local computation
• send a single message to a single process
• receive a single message from a single process

• communication model
• point-to-point (to send to multiple processes: multiple send events)
• error-free, infinite buffer
• potentially out of order

• software clocks
• capture event ordering that are visible to users who do not have physical clocks
• allows a protocol to infer ordering among events

visible orderings
• process order → if A and B are on the same process, I can tell that A is before B
• send-receive order → the send event must be before the receive event
• transitivity → if A<B and B<C, then A<C

• happened-before relation (denoted e→ f) captures the ordering that is visible to
users when there is no physical clock

• partial order among events
• concurrent-with relation (denoted e||f) if ¬(e→ f) ∧ ¬(f → e)

Logical Clocks
• each event has a single integer as its logical clock value
• each process has a local counter C
• protocol

• increment C at each local computation and send event
• send event: attaches the logical clock value V to the message
• receive event: C = max(C, V) + 1

• if event s happens before event t⇒ Cs < Ct

• Cs < Ct 6⇒ s happens before t

• for total order, extend with process number
• s.c denotes the value of c in state s, s.p indicates the process it belongs to
• the timestamp of any event is a tuple (s.c, s.p)
• (s.c, s.p) < (t.c, t.p) ⇐⇒ (s.c < t.c) ∨ ((s.c = t.c) ∧ (s.p < t.p))

Vector Clocks
• event s happens-before event t ⇐⇒ Cs < Ct

• each event has a vector of n integers as its vector clock value
• v1 = v2 if all n fields are the same
• v1 ≤ v2 if every field in v1 is less than or equal to the corresponding field in v2

• e.g. (3,1,5)≤(4,1,7)
• v1 < v2 if v1 ≤ v2 and v1 6= v2 (< is NOT a total order here)

• each process i has a local vector C
• protocol

• increment C[i] at each local computation and send event
• ith entry is the principle entry
• process i is the only process that can create new values for the ith entry

• send event: vector clock value V is attached to the message
• receive event: C = pairwise-max(C, V) ; C++

Matrix Clocks
• each event has 1 vector clock for each process

• the ith process on vector i is called process i’s principle vector
• protocol

• for principal vector C on process i,
• increment C[i] at each local computation and send event
• send event: all n vectors are attached to the message
• receive event: C = pairwise-max(C, V) ; C[i]++

· where V is the principle vector of the sender
• for non-principal vector C on process i

• receive event: C = pairwise-max(C, V);

05. GLOBAL SNAPSHOT
• captures a snapshot of local states on n processes such that the global snapshot
could have happened sometime in the past (user cannot tell the difference)

Consistent Snapshot
• consistent snapshot → a snapshot of local states on n processes such that the
global snapshot could have happened sometime in the past

• can have outgoing (L→ R) arrows, but can’t have incoming (R→ L) arrows

• global snapshot → a set of events such that if e2 is in the set and e1 is before e2
in process order, then e1 must be in the set

• a collection of local snapshots
• consistent local snapshot → a global snapshot s.t. if e2 is in the set and e1 is
before e2 in send-receive order, then e1 must be in the set

• aka global snapshot + any receive event in the set has its corresponding send
event in the set

• transitive relations implied

capturing a CGS
• communication model

• no message loss
• communication channels are unidirectional (model bidirectional channels as 2
unidirectional channels)

• FIFO delivery on each channel
• ensuring FIFO

• each process maintains a message number counter for each channel and
stamps each message sent

• receiver will only deliver messages in order

Chandy & Lamport’s Protocol
• each process is either

• red - has taken local snapshot
• white - has not taken local snapshot

• protocol initiated by a single process by turning itself from white to red

• once a process turns red, immediately send out Marker messages to all other
processes

• upon receiving Marker, process turns red
• total n ∗ (n− 1) Marker messages

• requires FIFO - marker messages are sent on the same channel as actual
messages

• on-the-fly messages: sent before sender’s local snapshot, received after
receiver’s local snapshot

06. MESSAGE ORDERING
Causal Order
• causal order → if s1 happened before s2, and r1 and r2 are on the same
process, then r1 must be before r2

• s1 → s2 ⇒ ¬(r2 ≺ r1)
• FIFO → any 2 messages from process Pi to Pj are received in the same order as
they are sent

• si ≺ sj ⇒ ¬(rj ≺ ri)
• e ≺ f denotes e occurred before f in the same process
• si ri denotes si is the send event corresponding to receive event ri

protocol: ensure causal order
• each process maintains a n by n matrixM

• M [i, j] = # of messages sent from i to j, as known by local (current) process
• when process i sends a message to process j,

• on process i: M [i, j]++
• piggybackM on the message

• when process j (with local matrixM) receives a message from process i with
matrix T piggybacked,

• setM = pairwise-max(M,T) if

{
T [k, j] ≤M [k, j] for all k 6= i

T [i, j] = M [i, j] + 1

• intuition: M [i, j] on process j takes on consecutive values
• if the entry is >1 larger than the local entry, it means that there is another
message in propagation

· we only care about column j - [i, j] should have a difference of 1
• else, delay the message

• M never decreases!
• for broadcast messages, same protocol (modelled as n point-to-point messages)

Total Ordering of Broadcast Messages
• broadcast → sent to all (including the sender itself)
• total ordering → all messages delivered to all processes in exactly the same
order (aka atomic broadcast)

• i.e. if every message is assigned a number, the number has to be consistent
across all users

• total ordering only applies to broadcast messages
• total ordering 6⇒ causal ordering

• causal ordering 6⇒ total ordering

Coordinator protocol
• a special process is assigned as the coordinator
• to broadcast a message:

• send a message to the coordinator
• coordinator assigns a seq # to the message

• coordinator forwards the message to all processes with the sequence number
• messages delivered according to seq# order

• problem: coordinator has too much control

Skeen’s Algorithm
• each process maintains

• logical clock
• message buffer for undelivered messages

• a message in the buffer is delivered/removed if
• all messages in the buffer have been assigned numbers
• this message has the smallest number

• protocol
• process broadcasts a message
• receiving processes put the message in buffer and reply (ACK) with their
current logical clock value

• sending process picks the max clock value as message number and notifies
(broadcasts) message number

correctness proof
• claim: all messages will be assigned message numbers
• claim: all messages will be delivered
• claim: if message A has number smaller than B, then B is delivered after A

07. LEADER ELECTION
• leader election trivially solves mutual exclusion and total order broadcast

Leader Election on a Ring
anonymous ring
• anonymous ring → no unique identifiers

• all must run the same algorithm (otherwise the algo itself is the unique ID)
• node can only send messages to its neighbours

• leader election impossible using deterministic algorithms
• same: initial state, state at each step, final state, algorithm on each node

Chang-Roberts Algorithm
• idea: largest ID is the leader

• each node has a unique ID
• nodes only send messages clockwise

• protocol:
• node sends an election message with its own ID clockwise
• a node forwards an election message if the ID is larger than
its own ID

• otherwise discard
• a node becomes a leader if it sees its own election message

• performance
• best case: 2n− 1 messages
• worst case: n(n+1)

2
• average case: O(n logn)

• taken over all possible orderings of nodes, each ordering having the same
probability

• (n− 1)! total orderings of the IDs
• let xk = number of messages caused by node k’s election message
• we want to find E[xk] for all k from 1 to n

• by linearity of expectation, E[
∑
xk] =

∑
E[xk]

• E[xk] =
∑k

i=1(i · Pr[xk = i])

• Pr[xk = 1] = Pr[next node has larger ID than k] = n−k
n−1

• E[xk] ≤ E[y] = 1
p

= n−1
n−k

where y is a random variable denoting the
number of lottery tickets we need to buy until winning the lottery (of probability
p) for the first time

•
∑n

k=1 E[Xk] = n+
∑n−1

k=1 E[Xk] < n+
∑n−1

k=1
n−1
n−k

=

n+ (n− 1)
∑n−1

k=1
1
k

= n+ (n− 1)O(logn) = O(n logn)

Leader Election on a General Graph
n is known
• complete graph

• each node sends its ID to all other node
• wait until you receive n IDs - biggest ID wins

• any connected graph
• flood your ID to all other nodes
• ask neighbours to recursively forward ID to other neighbours
• wait until you receive n IDs - biggest ID wins

n is unknown
• complete graph: n must be known
• any connected graph: use an auxiliary protocol to calculate n

• initiated by any node that wants to know n
• establish a spanning tree starting from the initiator

spanning tree to calculate n

• goal: each node knows its parents and children
• it’s fine if multiple nodes initiate this process - you’re just counting n
1. construct spanning tree: initiator sends child requests

• if node has not ACKed, sends ACK and send child requests to its neighbours

• if node has already ACKed, reject the request

2. count nodes: initiator sends do-count request
• recursive: children will respond with 1 + the number of children they have

08. DISTRIBUTED CONSENSUS
goal
• termination → all nodes (that have not failed) eventually decide
• agreement → all nodes that decide should decide on the same value

• if a node agrees then crashes, still satisfy the agreement
• validity → if all nodes have the same initial input, that value should be the only
possible decision value

• otherwise can decide on anything (but still satisfy Agreement)

v0. no failures
• trivial

v1. Node crash failures
model
• failure model

• × node crash failures
• node runs the algo, but stops executing at some arbitrary point in time

• X communication channels are reliable
• timing model

• X communication channels are synchronous
• message delay has a known upper bound x
• node processing delay has a known upper bound y (given as an input)

synchronous systems and rounds
• each round, every process:

1. does some local computation (local processing delay)
2. sends one message to every other process (message propagation delay)
3. receives one message from every other process

• round duration = clock error + msg propagation delay + local processing delay
• assume each process has a physical clock with some bounded clock error

• start a new round every ROUND_DURATION seconds
• according to local clock

• each message has a round number attached to it
• a message sent in a round must be received by the end of that round on the
receiver

• if receiver receives a message before it even starts the round: buffer the
message until round starts

protocol
• protocol: at each round, keep forwarding the values received

• each process sends its input to all others
• pick the min (or max)

• f + 1 rounds needed for f failures
• 1 round will be failure-free
• lower bound Ω(f)

• f must be an input to the protocol
• user indicates maximum number of fail-
ures to be tolerated

agreement proof
• with f + 1 rounds and f failures, there must be at least one good round

• claim: At the end of any good round r, all non-faulty nodes during round r have
the same S

• claim: Suppose r is a good round. The value of S on any non-faulty nodes
does not change during any round after r.

• claim: All nonfaulty processes at round f+1 will have the same S

v2. Link failures (Coordinated Attack)
model
• failure model

• X nodes do not fail
• × communication channels may fail - drop arbitrary (unbounded) # of msgs

• timing model
• X synchronous

• goal: termination/agreement/validity
• impossible to achieve these using a deterministic algorithm

• cos communication channel can drop all messages
• execution α is indistinguishable from execution β→ if the node sees the
same messages and inputs in both execution

v2.1. Weakened goal
still impossible using deterministic algo
• if all nodes start with 0, the decision = 0
• if all nodes start with 1 and no message
is lost during execution, decision = 1

• otherwise, any consensus

v2.2. Limited disagreement (small error)
• goal

• termination
• agreement: all nodes decide on the same value with probability 1− ε
• validity

• if all nodes start with 0, decision = 0
• if all nodes start with 1 and no message is lost throughout, decision = 1
• else: anything

• adversary maximises error probability
• X set inputs of the processes
• X cause message losses
• × does not know the outcome of any randomisation

randomised algorithm
• 2 processes (P1, P2), predetermined number (r) of rounds

• adversary determines which messages are lost before seeing random choices
• protocol

• P1 picks a random integer bar ∈ [1..r]
• each P1, P2 maintains a level variable L1, L2

• L1 and L2 differ by at most 1
• each round: send each other messages

• attach input, bar and level to each message
• P1: set L1 = L2+1

· (symmetric) same for P2
• ! L1/L2 never decreases!

• decision rule: after r rounds, P1/P2 decide on 1 ⇐⇒
• it knows its input and the other process input are both 1
• it knows bar (always true for P1)
• its level ≥ bar

• error probability ε = 1
r

v3. Node crash failures + Asynchronous
model
• failure model

• X reliable channel
• × node crash failures

• timing model
• asynchronous → process delay and message delay are finite but unbounded
• can no longer define a round

• goal: termination/agreement/validity
• FLP theorem (Fischer, Lynch, Paterson)→ the distributed consensus problem
under asynchronous communication model is impossible to solve even with a
single node crash failure

• fundamentally, because the protocol cannot accurately detect node failure

formalisms of FLP theorem
• global state of a system = all process states + message system state

• message system captures on-the-fly messages:
{(p,m)|messagem on the fly to process p}

• all messages are distinct
• sending and receiving operations are adding and removing content from the
message system, and changing process local state

• each step given a global state is fully described by p’s receiving m
• (p,m) is an event

• events are inputs to the state machine, that cause state transitions
• event e can be applied to the global state G if eitherm == null or (p,m) is
in the message system

• execution of any protocol is an infinite sequence of events
• process fail = finite number of steps

• schedule σ is a sequence of events that captures the execution of a protocol
• G′ = σ(G) means we apply σ to G to get G’
• must make sure σ can be applied to G (aka G’ is reachable from G if ∃σ such
that G′ = σ(G))

• messages have unbounded but finite delay - every message is eventually delivered

v4. Node Byzantine failures
model
• failure model

• X reliable channels
• × byzantine failures → nodes can behave unexpectedly and arbitrarily

• must consider the worst case where nodes intentionally break the protocol
• timing model

• X synchronous
• goal: termination/agreement/validity for non-faulty nodes only

• agreement: bad nodes can’t be forced to decide

• validity: if all the good nodes have the same initial input, that value should be
the only possible decision value

• byzantine consensus threshold for n processes, f possible byzantine failures
• if n ≤ 3f , then the byzantine consensus problem cannot be solved

protocol for n ≥ 4f + 1

• intuition
• rotating coordinator: process i is the coordinator for phase i
• coordinator sends a proposal to all processes
• a phase is a deciding phase if the coordinator is nonfaulty

• agreement after a phase with a good coordinator
• if the coordinator is non faulty, all processes see the proposal

• protocol
• f + 1 phases (cos at most f bad nodes)

• each phase is 2 rounds
• set local value = input
• each phase

• round 1: all-to-all broadcast
· send your local value to all processes

• round 2: coordinator round
· set proposal to majority (> n/2)
· send the proposal to everyone

• decide whether to listen to the coordinator
· if overwhelming majority (> n

2
+ f), set local value to majority

· else, set local value = coordinator’s proposal
proof
• Lemma 1: if all good processes have the same local value at the beginning of a
given phase, then this remains true at the end of a phase

• since we have n− f good processes and n− f > n
2

+ f , they will be the
overwhelming majority

• Lemma 2: if the coordinator in a phase is good, agreement will be achieved at the
end of that phase

• case 1: coordinator sees (and proposes) a majority=x
• then x appears (>n/2) times, of which >n/2-f must be from good processes
• thus other processes will see x (>n/2-f) times
• so no other value can be overwhelming majority

• case 2: coordinator receives equal distribution
• then it’s impossible for anyone to see an overwhelming majority
• for coordinator, no value x appears (>n/2) times
• thus for other processes, impossible for any y 6= x to appear (>n/2+f) times

• termination: after f+1 phases
• validity: follows from lemma 1
• agreement:

• with f+1 phases, at least one is a deciding phase
• by Lemma 2, all good processes will agree at deciding phase
• by Lemma 1, after a deciding phase, additional phases will not disrupt the
agreement achieved

10. SELF-STABILISATION
• state of a distributed system is either legal or illegal

• based on application semantics
• self-stabilising → if

• starting from any (legal or illegal) state, the protocol will eventually reach a legal
state if there are no more faults

• once in a legal state, it will only transit to a legal state unless there are faults
• typically runs in the background and never stops

Rotating Privilege Problem
• a ring of n processes

• each process can only communicate with neighbours
• at any time, only one node may have the privilege
• privilege is like a token

algorithm
• each process i has local integer variable Vi where 0 ≤ Vi ≤ k, k ≥ n
• one red process and some blue processes (allocate before running the algorithm)

• red process
• retrieve value L of clockwise neighbour
• if V == L: (has privilege)

• increment V ++ with mod k
• blue process

• retrieve value L of clockwise neighbour
• if V 6= L: (has privilege)

• set V = L

legal states
• Lemma: there are only 2 legal states

1. all n values same ⇒ red process privilege
2. only 2 different values forming 2 consecutive bands, with one band starting

from the red process ⇒ blue process privilege

Self-Stabilising Spanning Tree
• given n processes connected by an undirected graph and one special process P1,
construct a spanning tree rooted at P1

• each process maintains 2 variables: parent and dist (to root, ≥ 0)
• faults: wrong value of these variables

algorithm
• P1 repeatedly executes ‘dist=0; parent=null;‘
• all other nodes periodically execute

• retrieve dist from all neighbours
• set own dist = 1 + min(neighbour dists)

• set own parent = neighbour with smallest dist
• break tie: based on ID (e.g. smaller ID)

proof
• phase → minimum time period where each process has executed its code at least
once (can be more than once)

• assume that the topology doesn’t change
• i.e. no additional faults - we only need to reason about self-stabilising algos if
there are no additional faults

• let
• Ai be the level of process i (length of the shortest path from i to root)

• Ai will not change
• disti be the value of dist on i

• disti may change
• properties of levels of the nodes

1. a node at levelX has at least one neighbour in levelX − 1

• if there is a neighbour with level < X − 1, then the node can have a
smaller level < X

2. a node at levelXcan only have neighbours in levelX − 1, X,X + 1
• for X-1: same proof as (1)
• if there is a neighbour with >X+1, then that node can be X+1 by going
through the node instead

• lemma: at the end of phase r,
1. any process i whose Ai ≤ r − 1, has disti = Ai

• if level is < r, the distance value must become correct (i.e. dist=level)
2. any process i whose Ai ≥ r, has disti ≥ r

• for the remaining processes, the distance value is ≥ r and may still be
incorrect

• proof: by induction
• base: holds for r = 1
• assume lemma holds at phase r and consider phase r + 1

common self-stabilisation proof technique
• Step 1: Prove that the t actions will not roll back what is already achieved so far by
phase r (no backward move)

• Step 2: Prove that at some point, each node will achieve more (forward move)
• Step 3: Prove that the t actions will not roll back the effects of the forward move
after the forward move happens (no backward move after the forward move)

	01. MUTUAL EXCLUSION
	properties of a mutex algorithm
	Peterson's Algorithm
	proof

	Lamport's Bakery Algorithm
	Hardware Solutions
	Proof: Lamport's Bakery Algorithm

	02. SYNCHRONISATION PRIMITIVES
	Semaphores
	dining philosophers

	Monitor
	Hoare-style
	Java-style
	nested monitor
	producer-consumer problem
	reader-writer problem
	reader-writer (without starvation)
	barber-shop problem

	03. CONSISTENCY CONDITIONS
	Linearisability
	local property

	Consistency definitions for registers

	04. MODELS & CLOCKS
	visible orderings
	Logical Clocks
	Vector Clocks
	Matrix Clocks

	05. GLOBAL SNAPSHOT
	Consistent Snapshot
	capturing a CGS
	Chandy & Lamport's Protocol

	06. MESSAGE ORDERING
	Causal Order
	protocol: ensure causal order

	Total Ordering of Broadcast Messages
	Coordinator protocol
	Skeen's Algorithm
	correctness proof

	07. LEADER ELECTION
	Leader Election on a Ring
	anonymous ring
	Chang-Roberts Algorithm

	Leader Election on a General Graph
	spanning tree to calculate n

	08. DISTRIBUTED CONSENSUS
	v0. no failures
	v1. Node crash failures
	synchronous systems and rounds
	protocol
	agreement proof

	v2. Link failures (Coordinated Attack)
	v2.2. Limited disagreement (small error)
	randomised algorithm

	v3. Node crash failures + Asynchronous
	formalisms of FLP theorem

	v4. Node Byzantine failures
	protocol for n 4f+1

	10. SELF-STABILISATION
	Rotating Privilege Problem
	algorithm
	legal states

	Self-Stabilising Spanning Tree
	algorithm
	proof
	common self-stabilisation proof technique

