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01. MUTUAL EXCLUSION
properties of a mutex algorithm
• mutual exclusion → no more than one process in the critical section
• progress → if one or more process wants to enter and if no one is in the critical
section, then one of them can eventually enter the critical section

• no starvation → if a process wants to enter, it eventually can always enter
• no starvation implies progress!

• ! if a process is in the CS, we always assume that it will eventually exit the CS
• finite number of instructions in the CS

Peterson’s Algorithm

proof
• mutual exclusion: proof by contradiction

• case 1 - turn == 0 when P0 and P1 are both in CS
• then P0 executed turn=1 before P1 executed turn=0
• hence wantCS[0]==false as seen by P1
• but wantCS[0] set to true by P0

• case 2 - turn ==1. symmetric
• progress: proof by contradiction

• suppose both want to enter but none can enter⇒ wantCS must be true for both
• case 1: turn==0. then P0 can enter
• case 2: symmetric

• no starvation: proof by contradiction
• case 1: P0 is waiting, then wantCS[1]==true and turn=1

• P1 in critical region - eventually it exits and sets wantCS[1] to false
• (what if P1 wants to enter again immediately? then P1 will wait first because
wantCS[0]==true and it has set turn==0)

• case 2: P1 is waiting. symmetric

Lamport’s Bakery Algorithm
• for n processes

• get a number first (weak guarantee)
• get served when all lower numbers have been served (sufficient for mutex)

• 2 shared arrays of n elements
• boolean choosing[i] = false ⇒ is process i trying to get a number
• int number[i] = 0 ⇒ the number gotten by process i

• number[i] > 0: process wants to enter CS and that is the queue number

Hardware Solutions
• disable interrupts - to prevent context switch

• do not allow context switch in the critical section
• special machine-level instructions: TestAndSet executed atomically

• × when you design CPU, you want all instructions to roughly be the same
complexity so that your pipelines don’t have bubbles in it

• × degrades performance

Proof: Lamport’s Bakery Algorithm



02. SYNCHRONISATION PRIMITIVES
• solves busy wait problem (wastes CPU cycles)
• synchronisation primitives: OS-level APIs that the program may call

Semaphores
2 variables for each semaphore
• boolean value := true
• queue (of blocked processes) := empty
2 APIs, executed atomically
P() - wait
• if value == false, add self to queue and block
• can context switch to some other process
V() - signal
• set value = true
• wake up one arbitrary process in queue
semaphore for mutex:
• RequestCS() { P(); }
• ReleaseCS() { V(); }

dining philosophers
• one semaphore for each chopstick
• waits-for graph has a cycle⇒ deadlock

• avoid cycles in WFG / have a total ordering

Monitor
• X higher-level/easier to use than semaphore
• every object in Java is a monitor

Hoare-style
• notify() immediately switches from
caller to a waiting thread

• doesn’t use notifyAll()

Java-style
• notify() places a waiter on the ready
thread but signaller continues inside
the monitor

• P0 must acquire monitor lock
• use (while x!=1) to ensure x==1

nested monitor
• wait() only releases the immediate monitor lock

producer-consumer problem
• circular buffer of size n
• single producer, single consumer

• producer places item to the end of the buffer if buffer is not full
• consumer removes item from the head of the buffer if not empty

reader-writer problem
• multiple readers and writers accessing a file

• writer must have exclusive access
• readers may simultaneously access the file

reader-writer (without starvation)
maintain an explicit queue



barber-shop problem 03. CONSISTENCY CONDITIONS

• consistency → specifies what behaviour is allowed when a shared object is
accessed by multiple processes

• “consistent” = satisfies the specification
• historyH → a sequence of invocations and responses ordered by wall clock time

• for any invocationH , the corresponding response must be inH
• each execution of a parallel system corresponds to a history and vice versa

• sequential → an invocation is always immediately followed by its response
• no interleaving (else is concurrent)

• a history H is legal → if all responses satisfies the sequential semantics of the
data type

• sequential semantics → the semantics you would get if there is only one
process accessing that data type

• possible for sequential history to not be legal
• e.g. x=0, P1 writes 1 to x, P2 reads 0 from x (if it were the same thread it
would have been the same value)

• process p’s process subhistory ofH ,H|p→ the subsequence of all events of p
• process subhistory is always sequential

• object o’s object subhistory ofH ,H|o→ the subsequence of all events of o
• two histories are equivalent → if they have the exact same set of events

• same events⇒ implies all responses are the same
• may be different ordering of events (only care about responses)

• process/program order → a partial order among all events
• within the same process, process order is the same as execution order
• no other additional orderings

• sequential consistency → equivalent to some legal sequential history that
preserves process order

• (Lamport’s definition) results are same as in some sequential order & preserves
program order

Linearisability
• stronger than sequential consistency
• external order → a history H induces the “<” partial order among operations

• o1 < o2 ⇐⇒ the response of o1 appears in H before the invocation of o2
• aka o1 finishes before o2 starts

• preserves external order⇒ preserves program order
• linearisability → sequentially consistent (with some legal sequential history S)
and S preserves the external order in H

• (alternate definition) The execution is equivalent to some execution such that
each operation happens instantaneously at some point between the invocation
and response

• for every operation in the execution, you can find a linearisation point

between the invocation and response event
• linearisable⇒ sequentially consistent

local property
• linearisability is a local property

• H is linearisable ⇐⇒ for any object x,H|x is linearisable
• useful because you can reason about objects instead

• sequential consistency is not a local property
• H may not be sequentially consistent, but H|x and H|y can be sequentially
consistent

proof: linearisability is a local property
• using a directed graph: directed edge from o1→ o2 if

• o1 and o2 are on the same object x and o1 is before o2 when linearisingH|x
(o1→ o2 due to obj)

• o1 < o2 in external order (o1→ o2 due toH)
• any topological sorting of the graph gives us a legal sequential history S
• any cycle must be composed of

• edges to some object x (≈ 1 edge since H|x is equivalent S with a total order)
• edges due to some H (≈ 1 edge since partial order induced by H is transitive)
• edges due to some object y (≈ 1 edge)
• edges due to some H (≈ 1 edge)

Consistency definitions for registers
• register → ADT: a single value that can be read and written

• atomic → if the implementation always ensures linearisability of the history
• sequentially consistent → if the implementation always ensures sequential
consistency of the history

• regular → when a read
• not overlap with any write, the read returns the value written by one of the
most recent writes

• overlaps with one or more writes, the read returns the value written by one of
the most recent writes OR the value written by one of the overlapping writes

• safe → if the implementation always ensures that
• when a read does not overlap with any write, it returns the value written by
one of the most recent writes

• when a read overlaps with one or more writes, it can return anything
• ! atomic⇒ regular⇒ safe
• regular 6⇒ sequentially consistent; sequentially consistent 6⇒ regular



04. MODELS & CLOCKS
• process can perform 3 kinds of atomic events/actions

• local computation
• send a single message to a single process
• receive a single message from a single process

• communication model
• point-to-point (to send to multiple processes: multiple send events)
• error-free, infinite buffer
• potentially out of order

• software clocks
• capture event ordering that are visible to users who do not have physical clocks
• allows a protocol to infer ordering among events

visible orderings
• process order → if A and B are on the same process, I can tell that A is before B
• send-receive order → the send event must be before the receive event
• transitivity → if A<B and B<C, then A<C

• happened-before relation (denoted e→ f ) captures the ordering that is visible to
users when there is no physical clock

• partial order among events
• concurrent-with relation (denoted e||f ) if ¬(e→ f) ∧ ¬(f → e)

Logical Clocks
• each event has a single integer as its logical clock value
• each process has a local counter C
• protocol

• increment C at each local computation and send event
• send event: attaches the logical clock value V to the message
• receive event: C = max(C, V ) + 1

• if event s happens before event t⇒ Cs < Ct

• Cs < Ct 6⇒ s happens before t

• for total order, extend with process number
• s.c denotes the value of c in state s, s.p indicates the process it belongs to
• the timestamp of any event is a tuple (s.c, s.p)
• (s.c, s.p) < (t.c, t.p) ⇐⇒ (s.c < t.c) ∨ ((s.c = t.c) ∧ (s.p < t.p))

Vector Clocks
• event s happens-before event t ⇐⇒ Cs < Ct

• each event has a vector of n integers as its vector clock value
• v1 = v2 if all n fields are the same
• v1 ≤ v2 if every field in v1 is less than or equal to the corresponding field in v2

• e.g. (3,1,5)≤(4,1,7)
• v1 < v2 if v1 ≤ v2 and v1 6= v2 (< is NOT a total order here)

• each process i has a local vector C
• protocol

• increment C[i] at each local computation and send event
• ith entry is the principle entry
• process i is the only process that can create new values for the ith entry

• send event: vector clock value V is attached to the message
• receive event: C = pairwise-max(C, V ) ; C++

Matrix Clocks
• each event has 1 vector clock for each process

• the ith process on vector i is called process i’s principle vector
• protocol

• for principal vector C on process i,
• increment C[i] at each local computation and send event
• send event: all n vectors are attached to the message
• receive event: C = pairwise-max(C, V ) ; C[i]++

· where V is the principle vector of the sender
• for non-principal vector C on process i

• receive event: C = pairwise-max(C, V );

05. GLOBAL SNAPSHOT
• captures a snapshot of local states on n processes such that the global snapshot
could have happened sometime in the past (user cannot tell the difference)

Consistent Snapshot
• consistent snapshot → a snapshot of local states on n processes such that the
global snapshot could have happened sometime in the past

• can have outgoing (L→ R) arrows, but can’t have incoming (R→ L) arrows

• global snapshot → a set of events such that if e2 is in the set and e1 is before e2
in process order, then e1 must be in the set

• a collection of local snapshots
• consistent local snapshot → a global snapshot s.t. if e2 is in the set and e1 is
before e2 in send-receive order, then e1 must be in the set

• aka global snapshot + any receive event in the set has its corresponding send
event in the set

• transitive relations implied

capturing a CGS
• communication model

• no message loss
• communication channels are unidirectional (model bidirectional channels as 2
unidirectional channels)

• FIFO delivery on each channel
• ensuring FIFO

• each process maintains a message number counter for each channel and
stamps each message sent

• receiver will only deliver messages in order

Chandy & Lamport’s Protocol
• each process is either

• red - has taken local snapshot
• white - has not taken local snapshot

• protocol initiated by a single process by turning itself from white to red



• once a process turns red, immediately send out Marker messages to all other
processes

• upon receiving Marker, process turns red
• total n ∗ (n− 1) Marker messages

• requires FIFO - marker messages are sent on the same channel as actual
messages

• on-the-fly messages: sent before sender’s local snapshot, received after
receiver’s local snapshot

06. MESSAGE ORDERING
Causal Order
• causal order → if s1 happened before s2, and r1 and r2 are on the same
process, then r1 must be before r2

• s1 → s2 ⇒ ¬(r2 ≺ r1)
• FIFO → any 2 messages from process Pi to Pj are received in the same order as
they are sent

• si ≺ sj ⇒ ¬(rj ≺ ri)
• e ≺ f denotes e occurred before f in the same process
• si  ri denotes si is the send event corresponding to receive event ri

protocol: ensure causal order
• each process maintains a n by n matrixM

• M [i, j] = # of messages sent from i to j, as known by local (current) process
• when process i sends a message to process j,

• on process i: M [i, j]++
• piggybackM on the message

• when process j (with local matrixM ) receives a message from process i with
matrix T piggybacked,

• setM = pairwise-max(M,T ) if

{
T [k, j] ≤M [k, j] for all k 6= i

T [i, j] = M [i, j] + 1

• intuition: M [i, j] on process j takes on consecutive values
• if the entry is >1 larger than the local entry, it means that there is another
message in propagation

· we only care about column j - [i, j] should have a difference of 1
• else, delay the message

• M never decreases!
• for broadcast messages, same protocol (modelled as n point-to-point messages)

Total Ordering of Broadcast Messages
• broadcast → sent to all (including the sender itself)
• total ordering → all messages delivered to all processes in exactly the same
order (aka atomic broadcast)

• i.e. if every message is assigned a number, the number has to be consistent
across all users

• total ordering only applies to broadcast messages
• total ordering 6⇒ causal ordering

• causal ordering 6⇒ total ordering

Coordinator protocol
• a special process is assigned as the coordinator
• to broadcast a message:

• send a message to the coordinator
• coordinator assigns a seq # to the message

• coordinator forwards the message to all processes with the sequence number
• messages delivered according to seq# order

• problem: coordinator has too much control

Skeen’s Algorithm
• each process maintains

• logical clock
• message buffer for undelivered messages

• a message in the buffer is delivered/removed if
• all messages in the buffer have been assigned numbers
• this message has the smallest number

• protocol
• process broadcasts a message
• receiving processes put the message in buffer and reply (ACK) with their
current logical clock value

• sending process picks the max clock value as message number and notifies
(broadcasts) message number

correctness proof
• claim: all messages will be assigned message numbers
• claim: all messages will be delivered
• claim: if message A has number smaller than B, then B is delivered after A



07. LEADER ELECTION
• leader election trivially solves mutual exclusion and total order broadcast

Leader Election on a Ring
anonymous ring
• anonymous ring → no unique identifiers

• all must run the same algorithm (otherwise the algo itself is the unique ID)
• node can only send messages to its neighbours

• leader election impossible using deterministic algorithms
• same: initial state, state at each step, final state, algorithm on each node

Chang-Roberts Algorithm
• idea: largest ID is the leader

• each node has a unique ID
• nodes only send messages clockwise

• protocol:
• node sends an election message with its own ID clockwise
• a node forwards an election message if the ID is larger than
its own ID

• otherwise discard
• a node becomes a leader if it sees its own election message

• performance
• best case: 2n− 1 messages
• worst case: n(n+1)

2
• average case: O(n logn)

• taken over all possible orderings of nodes, each ordering having the same
probability

• (n− 1)! total orderings of the IDs
• let xk = number of messages caused by node k’s election message
• we want to find E[xk] for all k from 1 to n

• by linearity of expectation, E[
∑
xk] =

∑
E[xk]

• E[xk] =
∑k

i=1(i · Pr[xk = i])

• Pr[xk = 1] = Pr[next node has larger ID than k] = n−k
n−1

• E[xk] ≤ E[y] = 1
p

= n−1
n−k

where y is a random variable denoting the
number of lottery tickets we need to buy until winning the lottery (of probability
p) for the first time

•
∑n

k=1 E[Xk] = n+
∑n−1

k=1 E[Xk] < n+
∑n−1

k=1
n−1
n−k

=

n+ (n− 1)
∑n−1

k=1
1
k

= n+ (n− 1)O(logn) = O(n logn)

Leader Election on a General Graph
n is known
• complete graph

• each node sends its ID to all other node
• wait until you receive n IDs - biggest ID wins

• any connected graph
• flood your ID to all other nodes
• ask neighbours to recursively forward ID to other neighbours
• wait until you receive n IDs - biggest ID wins

n is unknown
• complete graph: n must be known
• any connected graph: use an auxiliary protocol to calculate n

• initiated by any node that wants to know n
• establish a spanning tree starting from the initiator

spanning tree to calculate n

• goal: each node knows its parents and children
• it’s fine if multiple nodes initiate this process - you’re just counting n
1. construct spanning tree: initiator sends child requests

• if node has not ACKed, sends ACK and send child requests to its neighbours

• if node has already ACKed, reject the request

2. count nodes: initiator sends do-count request
• recursive: children will respond with 1 + the number of children they have

08. DISTRIBUTED CONSENSUS
goal
• termination → all nodes (that have not failed) eventually decide
• agreement → all nodes that decide should decide on the same value

• if a node agrees then crashes, still satisfy the agreement
• validity → if all nodes have the same initial input, that value should be the only
possible decision value

• otherwise can decide on anything (but still satisfy Agreement)

v0. no failures
• trivial

v1. Node crash failures
model
• failure model

• × node crash failures
• node runs the algo, but stops executing at some arbitrary point in time

• X communication channels are reliable
• timing model

• X communication channels are synchronous
• message delay has a known upper bound x
• node processing delay has a known upper bound y (given as an input)

synchronous systems and rounds
• each round, every process:

1. does some local computation (local processing delay)
2. sends one message to every other process (message propagation delay)
3. receives one message from every other process

• round duration = clock error + msg propagation delay + local processing delay
• assume each process has a physical clock with some bounded clock error

• start a new round every ROUND_DURATION seconds
• according to local clock

• each message has a round number attached to it
• a message sent in a round must be received by the end of that round on the
receiver

• if receiver receives a message before it even starts the round: buffer the
message until round starts

protocol
• protocol: at each round, keep forwarding the values received

• each process sends its input to all others
• pick the min (or max)

• f + 1 rounds needed for f failures
• 1 round will be failure-free
• lower bound Ω(f)

• f must be an input to the protocol
• user indicates maximum number of fail-
ures to be tolerated

agreement proof
• with f + 1 rounds and f failures, there must be at least one good round

• claim: At the end of any good round r, all non-faulty nodes during round r have
the same S

• claim: Suppose r is a good round. The value of S on any non-faulty nodes
does not change during any round after r.

• claim: All nonfaulty processes at round f+1 will have the same S



v2. Link failures (Coordinated Attack)
model
• failure model

• X nodes do not fail
• × communication channels may fail - drop arbitrary (unbounded) # of msgs

• timing model
• X synchronous

• goal: termination/agreement/validity
• impossible to achieve these using a deterministic algorithm

• cos communication channel can drop all messages
• execution α is indistinguishable from execution β→ if the node sees the
same messages and inputs in both execution

v2.1. Weakened goal
still impossible using deterministic algo
• if all nodes start with 0, the decision = 0
• if all nodes start with 1 and no message
is lost during execution, decision = 1

• otherwise, any consensus

v2.2. Limited disagreement (small error)
• goal

• termination
• agreement: all nodes decide on the same value with probability 1− ε
• validity

• if all nodes start with 0, decision = 0
• if all nodes start with 1 and no message is lost throughout, decision = 1
• else: anything

• adversary maximises error probability
• X set inputs of the processes
• X cause message losses
• × does not know the outcome of any randomisation

randomised algorithm
• 2 processes (P1, P2), predetermined number (r) of rounds

• adversary determines which messages are lost before seeing random choices
• protocol

• P1 picks a random integer bar ∈ [1..r]
• each P1, P2 maintains a level variable L1, L2

• L1 and L2 differ by at most 1
• each round: send each other messages

• attach input, bar and level to each message
• P1: set L1 = L2+1

· (symmetric) same for P2
• ! L1/L2 never decreases!

• decision rule: after r rounds, P1/P2 decide on 1 ⇐⇒
• it knows its input and the other process input are both 1
• it knows bar (always true for P1)
• its level ≥ bar

• error probability ε = 1
r

v3. Node crash failures + Asynchronous
model
• failure model

• X reliable channel
• × node crash failures

• timing model
• asynchronous → process delay and message delay are finite but unbounded
• can no longer define a round

• goal: termination/agreement/validity
• FLP theorem (Fischer, Lynch, Paterson)→ the distributed consensus problem
under asynchronous communication model is impossible to solve even with a
single node crash failure

• fundamentally, because the protocol cannot accurately detect node failure

formalisms of FLP theorem
• global state of a system = all process states + message system state

• message system captures on-the-fly messages:
{(p,m)|messagem on the fly to process p}

• all messages are distinct
• sending and receiving operations are adding and removing content from the
message system, and changing process local state

• each step given a global state is fully described by p’s receiving m
• (p,m) is an event

• events are inputs to the state machine, that cause state transitions
• event e can be applied to the global state G if eitherm == null or (p,m) is
in the message system

• execution of any protocol is an infinite sequence of events
• process fail = finite number of steps

• schedule σ is a sequence of events that captures the execution of a protocol
• G′ = σ(G) means we apply σ to G to get G’
• must make sure σ can be applied to G (aka G’ is reachable from G if ∃σ such
that G′ = σ(G))

• messages have unbounded but finite delay - every message is eventually delivered

v4. Node Byzantine failures
model
• failure model

• X reliable channels
• × byzantine failures → nodes can behave unexpectedly and arbitrarily

• must consider the worst case where nodes intentionally break the protocol
• timing model

• X synchronous
• goal: termination/agreement/validity for non-faulty nodes only

• agreement: bad nodes can’t be forced to decide

• validity: if all the good nodes have the same initial input, that value should be
the only possible decision value

• byzantine consensus threshold for n processes, f possible byzantine failures
• if n ≤ 3f , then the byzantine consensus problem cannot be solved

protocol for n ≥ 4f + 1

• intuition
• rotating coordinator: process i is the coordinator for phase i
• coordinator sends a proposal to all processes
• a phase is a deciding phase if the coordinator is nonfaulty

• agreement after a phase with a good coordinator
• if the coordinator is non faulty, all processes see the proposal

• protocol
• f + 1 phases (cos at most f bad nodes)

• each phase is 2 rounds
• set local value = input
• each phase

• round 1: all-to-all broadcast
· send your local value to all processes

• round 2: coordinator round
· set proposal to majority (> n/2)
· send the proposal to everyone

• decide whether to listen to the coordinator
· if overwhelming majority (> n

2
+ f ), set local value to majority

· else, set local value = coordinator’s proposal
proof
• Lemma 1: if all good processes have the same local value at the beginning of a
given phase, then this remains true at the end of a phase

• since we have n− f good processes and n− f > n
2

+ f , they will be the
overwhelming majority

• Lemma 2: if the coordinator in a phase is good, agreement will be achieved at the
end of that phase

• case 1: coordinator sees (and proposes) a majority=x
• then x appears (>n/2) times, of which >n/2-f must be from good processes
• thus other processes will see x (>n/2-f) times
• so no other value can be overwhelming majority

• case 2: coordinator receives equal distribution
• then it’s impossible for anyone to see an overwhelming majority
• for coordinator, no value x appears (>n/2) times
• thus for other processes, impossible for any y 6= x to appear (>n/2+f) times

• termination: after f+1 phases
• validity: follows from lemma 1
• agreement:

• with f+1 phases, at least one is a deciding phase
• by Lemma 2, all good processes will agree at deciding phase
• by Lemma 1, after a deciding phase, additional phases will not disrupt the
agreement achieved



10. SELF-STABILISATION
• state of a distributed system is either legal or illegal

• based on application semantics
• self-stabilising → if

• starting from any (legal or illegal) state, the protocol will eventually reach a legal
state if there are no more faults

• once in a legal state, it will only transit to a legal state unless there are faults
• typically runs in the background and never stops

Rotating Privilege Problem
• a ring of n processes

• each process can only communicate with neighbours
• at any time, only one node may have the privilege
• privilege is like a token

algorithm
• each process i has local integer variable Vi where 0 ≤ Vi ≤ k, k ≥ n
• one red process and some blue processes (allocate before running the algorithm)

• red process
• retrieve value L of clockwise neighbour
• if V == L: (has privilege)

• increment V ++ with mod k
• blue process

• retrieve value L of clockwise neighbour
• if V 6= L: (has privilege)

• set V = L

legal states
• Lemma: there are only 2 legal states

1. all n values same ⇒ red process privilege
2. only 2 different values forming 2 consecutive bands, with one band starting

from the red process ⇒ blue process privilege

Self-Stabilising Spanning Tree
• given n processes connected by an undirected graph and one special process P1,
construct a spanning tree rooted at P1

• each process maintains 2 variables: parent and dist (to root, ≥ 0)
• faults: wrong value of these variables

algorithm
• P1 repeatedly executes ‘dist=0; parent=null;‘
• all other nodes periodically execute

• retrieve dist from all neighbours
• set own dist = 1 + min(neighbour dists)

• set own parent = neighbour with smallest dist
• break tie: based on ID (e.g. smaller ID)

proof
• phase → minimum time period where each process has executed its code at least
once (can be more than once)

• assume that the topology doesn’t change
• i.e. no additional faults - we only need to reason about self-stabilising algos if
there are no additional faults

• let
• Ai be the level of process i (length of the shortest path from i to root)

• Ai will not change
• disti be the value of dist on i

• disti may change
• properties of levels of the nodes

1. a node at levelX has at least one neighbour in levelX − 1

• if there is a neighbour with level < X − 1, then the node can have a
smaller level < X

2. a node at levelXcan only have neighbours in levelX − 1, X,X + 1
• for X-1: same proof as (1)
• if there is a neighbour with >X+1, then that node can be X+1 by going
through the node instead

• lemma: at the end of phase r,
1. any process i whose Ai ≤ r − 1, has disti = Ai

• if level is < r, the distance value must become correct (i.e. dist=level)
2. any process i whose Ai ≥ r, has disti ≥ r

• for the remaining processes, the distance value is ≥ r and may still be
incorrect

• proof: by induction
• base: holds for r = 1
• assume lemma holds at phase r and consider phase r + 1

common self-stabilisation proof technique
• Step 1: Prove that the t actions will not roll back what is already achieved so far by
phase r (no backward move)

• Step 2: Prove that at some point, each node will achieve more (forward move)
• Step 3: Prove that the t actions will not roll back the effects of the forward move
after the forward move happens (no backward move after the forward move)
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