CS4231 AY22/23 SEM 2 github/jovyntls

01. MUTUAL EXCLUSION

properties of a mutex algorithm

- **mutual exclusion** \rightarrow no more than one process in the critical section
- **progress** \rightarrow if one or more process wants to enter and if no one is in the critical section, then one of them can eventually enter the critical section
- **no starvation** \rightarrow if a process wants to enter, it eventually can always enter no starvation implies progress!
- ! if a process is in the CS, we always assume that it will eventually exit the CS finite number of instructions in the CS

Peterson's Algorithm

Shared bool wantCS[0] = false, bool wantCS[1] = false, int turn = 0;

proof

- · mutual exclusion: proof by contradiction
- case 1 turn == 0 when P0 and P1 are both in CS
 - then P0 executed turn=1 before P1 executed turn=0
 - hence wantCS[0]==false as seen by P1
 - but wantCS[0] set to true by P0
- case 2 turn ==1. symmetric
- · progress: proof by contradiction
 - suppose both want to enter but none can enter \Rightarrow wantCS must be true for both
 - case 1: turn==0. then P0 can enter
 - case 2: symmetric
- no starvation: proof by contradiction
 - case 1: P0 is waiting, then wantCS[1]==true and turn=1
 - · P1 in critical region eventually it exits and sets wantCS[1] to false
 - . (what if P1 wants to enter again immediately? then P1 will wait first because wantCS[0]==true and it has set turn==0)
 - · case 2: P1 is waiting. symmetric

Lamport's Bakery Algorithm

```
    for n processes
```

- get a number first (weak guarantee)
- get served when all lower numbers have been served (sufficient for mutex) 2 shared arrays of n elements
 - boolean choosing[i] = false \Rightarrow is process *i* trying to get a number • int number[i] = 0 \Rightarrow the number gotten by process *i*
 - number[i] > 0: process wants to enter CS and that is the queue number ReleaseCS(int myid) {
 - number[myid] = 0;

// a utility function

```
boolean Smaller(int number1, int id1, int number2, int id2) {
  if (number1 < number 2) return true:
  if (number1 == number2) {
       if (id1 < id2) return true: else return false:
  }
  if (number 1 > number2) return false
     RequestCS(int myid) {
```

```
choosing[myid] = true;
```

```
for (int j = 0; j < n; j++)
```

- get a if (number[i] > number[mvid]) number[mvid] = number[i]; number number[mvid]++;
 - choosing[myid] = false;

```
for (int j = 0; j < n; j++) {
wait for
```

```
while (choosing[ j ] == true);
people
ahead
             while (number[ j ] != 0 &&
of me
```

Smaller(number[j], j, number[myid], myid));

Hardware Solutions

- · disable interrupts to prevent context switch
- · do not allow context switch in the critical section
- · special machine-level instructions: TestAndSet executed atomically

```
\cdot \times when you design CPU, you want all instructions to roughly be the same
 complexity so that your pipelines don't have bubbles in it
```

• × degrades performance

```
boolean TestAndSet(Boolean openDoor, boolean newValue) {
```

```
boolean tmp = openDoor.getValue();
openDoor.setValue(newValue);
```

Executed atomically

```
return tmp:
```

shared Boolean variable openDoor initialized to true: RequestCS(process id) {

while (TestAndSet(openDoor, false) == false) {};

ReleaseCS(process id) { openDoor.setValue(true); }

Proof: Lamport's Bakery Algorithm

}

}

choosing[myid] = true;

for (int i = 0; i < n; i + +)

choosing[mvid] = false:

for (int j = 0; j < n; j ++) {

while (choosing[*j*] == true);

Smaller(number[i], i,

number[myid], myid));

At T1, process *i* is here

At T1, process k is here

Case 2: At T2, process i is here

if (number[j] > number[myid]),

At T2, process k is here

while (choosing[j] == true);

Smaller(number[i], i,

At T1, process k is here

number[myid], myid)); | 🔻

while (number[i] != 0 &&

number[myid] = number[j];

choosing[myid] = true;

for (int *j* = 0; *j* < *n*; *j* ++)

choosing[myid] = false;

for (int j = 0; j < n; j ++) {

number[myid]++;

while (number[/] != 0 &&

number[myid]++;

if (number[j] > number[myid])

number[myid] = number[*j*];

```
    Progress: Proof by contradiction.

                                 Consider any set of processes that wants
choosing[myid] = true;
                                 to enter the CS but no one can make
for (int i = 0; i < n; i ++)
                                 progress. Each process is guaranteed to
  if (number[ i ] > number[myid])
                                 get a queue #. Let process i be the one
     number[myid] = number[ j ];
                                 with the smallest queue number. Consider
number[myid]++;
                                 where process i can be blocked:
choosing[myid] = false;
                                       Case 1:
                                          Process i will eventually set
for (int j = 0; j < n; j ++) {
                                          choosing[ i] to false
  while (choosing[ i ] == true);
                                          Process i will then block
  while (number[ j ] != 0 && 🗮
                                         (otherwise there is progress
        Smaller(number[ j ], j
                                          already!)
        number[myid], myid));
```

Case 2: Impossible since process i has the smallest queue number

Mutual exclusion: Suppose *i* and *k* both in critical section.

• W.I.o.g, assume Smaller(number[i], i, At T1, process *i* is here number [k], *k*) after they are in the critical sec Process k must see number[i] == 0 at

```
that time T1: We want to know where
process i is at time T1.
```

```
Case 1: Process i has not executed
 "if (number [k] > number [i])". Then
eventually number [i] > number [k].
Impossible.
```

```
 Case 2: Has executed "if ()"
```

```
    Subcase 2.1: Process i has

executed "number[myid]++;"
```

```
-- impossible since number[ i ] == 0
```

```
    Subcase 2.2: Has not executed

"number[myid]++;" -- This is the only
possible case.
```

 Now continue and consider the time T2 when process k invoked "while (choosing[*i*] = true);" and passed that statement.

```
• We want to see where process i is at
T2. Since choosing [i] = false, process i
must either have finished choosing its
queue number or have not started
choosing:
```

```
• Case 1: process i has finished
choosing and has executed
choosing[ i ] = false; Impossible
since T2 < T1.
```

```
    Case 2: process i has not started

choosing and has not executed
choosing[ i ] = true. But then number[
i] will be larger than number[k].
Contradiction.
```

02. SYNCHRONISATION PRIMITIVES

- · solves busy wait problem (wastes CPU cycles)
- · synchronisation primitives: OS-level APIs that the program may call

Semaphores

2 variables for each semaphore • boolean value := true	P(): if (<u>value</u> == false) {	Executed
• queue (of blocked processes) := empty	add myself to queue	> (e.g.,
2 APIs, executed atomically	and block;	interrupt
P() - wait	}	disabled)
• if value == false, add self to queue and block	value = false;	·
 can context switch to some other process 	(if blocks, will o	context switch
V() - signal	V()·	\ \
• set value = true	value = true:	Executed
 wake up one arbitrary process in queue 	if (queue is not empty) {	atomically
semaphore for mutex:	wake up one arbitrary	interrupt
• RequestCS() { P(); }	process on the queue	disabled)
• ReleaseCS() { V(); }	})

dining philosophers

- · one semaphore for each chopstick
- waits-for graph has a cycle ⇒ deadlock
- · avoid cycles in WFG / have a total ordering

```
philosopher 1 philosopher 2 philosopher 3 philosopher 4 philosopher
cstick[1].P(); cstick[2].P(); cstick[3].P(); cstick[4].P(); cstick[1].P()
cstick[2].P(); cstick[3].P(); cstick[4].P(); cstick[5].P(); cstick[5].P();
```

· Avoid cycles (or have a total ordering of the chopsticks)

```
cstick[1]
cstick[5]
                            cstick[2]
     cstick[4]
```

It is possible for all processes to block Deadlock cstick[1] cstick[5] cstick[2] cstick[4] cstick[3]

philosopher 1 philosopher 2 philosopher 3 philosopher 4 philosopher 5

cstick[1].P(); cstick[2].P(); cstick[3].P(); cstick[4].P(); cstick[5].P();

cstick[2].P(); cstick[3].P(); cstick[4].P(); cstick[5].P(); cstick[1].P();

notify() places a waiter on the ready

Second kind: Java-style Monitor

Process 1

vnchronized (object)

process 1 continues execution

object.notify(); assert(x == 1); // x must be 1

x=1:

x=2:

• use (while x!=1) to ensure x==1

thread but signaller continues inside

Monitor

✓ higher-level/easier to use than semaphore

cstick[3

every object in Java is a monitor

```
    Each monitor has two queues of blocked processes

                                                        enterMonitor()
                    synchronized (object) { 🖉

    enter monitor if no one is
    in; otherwise add myself to
    Three special methods for using when inside a monitor

                                                           the monitor-queue and
Like a
                                                           block:
                                                                                                      synchronized (object) {
                                                                                                                                                 Add myself to the wait-queue,
exit monitor, and then block ----
critical
                                                                                                                                                 all done atomically
                                                        exitMonitor():
 section
                                                                                                                                                If wait-queue is not empty, pick
one arbitrary process from wait-
                                                           If monitor-queue is not
                                                           empty, pick one arbitrary
                                                                                                          oblect.notify():
                                                           process from mo
                                                                                                                                                 queue and unblock it
                                                              eue and unblock it
                                                                                                         object.notifyAll();
                                                                                                                                                If wait-queue is not empty, unblock
     sometime we also say that a monitor has a monitor lock
```

Java-stvle

the monitor

synchronized (object)

if (x != 1) object.wait()

Process 0

// needs to acquire monitor lock // x may not be 1 here

P0 must acquire monitor lock

Hoare-style

- notify() immediately switches from caller to a waiting thread
- doesn't use notifyAll() First kind: Hoare-style Monitor

Process 0	Process 1
synchronized (object) {	
if (x != 1) object.wait();	
	synchronized (object) {
	x=1;
	object.notify();
* assert(x == 1); // x must be 1	
x = 2;	
}	
	// x may no longer be 1 here
	}
process 0 take	s over the execution

nested monitor

wait() only releases the *immediate* monitor lock

Nested Monitor in Java

circular buffer of size n

- sinale producer, sinale consumer
 - · producer places item to the end of the buffer if buffer is not full
 - consumer removes item from the head of the buffer if not empty

object sharedBuffer;

reader-writer problem

- · multiple readers and writers accessing a file
- writer must have exclusive access

· readers may simultaneously access the file int numReader, numWriter; Object object;

reader-writer (without starvation)

```
maintain an explicit queue
       Vector queue; // shared among all threads
       int numReader; int numWriter;
       // code for writer entry
       Writer w = new Writer(myname);
       synchronized (queue) {
           if (numReader > 0 || numWriter > 0) {
                w.okToGo = false:
                queue.add(w);
           } else {
                w.okToGo = true;
                numWriter++;
           ł
       }
       synchronized (w) { if (!w.okToGo) w.wait(); }
    // code for writer exit
    synchronized (queue)
        numWriter--:
        if (queue is not empty) {
           remove a single writer or a batch of readers from queue
           for each request removed do {
                numberWriter++ or numberReader++;
                synchronized (request) {
                    request.okToGo = true;
                    request.notify()
            ł
        ł
    // code for reader entry
    Reader r = new Reader(myname);
    synchronized (queue) {
        if ((numWriter > 0) || !queue.isEmpty()) {
            r.okToGo = false;
             queue.add(r)
        } else {
```

numReader++ 3

ł

ł

}

r.okToGo = true

```
synchroized (r) { if (!r.okToGo) r.wait(); }
// code for reader exit
synchronized (queue)
   numReader--:
   if (numReader > 0) exit(); // I am not the last reader
   if (queue is not empty) {
```

```
remove a single writer or a batch of readers from queue
for each request removed do {
    numWriter++ or numReader++;
    synchronized (request) {
        request.okToGo = true;
```

```
request.notify();
```

barber-shop problem

Customer

Vector customQueue; // shared data among all threads

synchronized (numberChair) {
 if (numberChair > 0) numberChair--;
 else return; // leave // this releases monitor lock
}

// middle part (see next slide)

synchronized (numChair) {

numberChair++;

}

}

Customer – Middle part

// middle part
Customer myself = new Customer(myname);
myself.done = false;
synchronized (customQueue) {
 customQueue.add(myself); // can also simulate chair here
 customQueue.notify();

synchronized (myself) {
 if (!myself.done) myself.wait(); // no need to use while
}

Barber

while (true) {

Customer current; synchronized (customerQueue) { if (customerQueue.isEmpty()) customerQueue.wait(); // no need to use "while" here because only one barber

current = customerQueue.removeFirst();
}

// hair cut the current customer

synchronized (current) {

current.dome = true; // this flag helps to avoid needing nested monitor current.notify();

}

03. CONSISTENCY CONDITIONS

Formalizing a Parallel System

wall clock time /

physical time /

real time

- Operation: A single invocation/response pair of a single method of a single shared object by a process
 e being an operation
 - proc(e): The invoking process
 - obj(e): The object
 - inv(e): Invocation event (start time)
 - resp(e): Reply event (finish time)
- Two invocation events are the same if invoker, invokee, parameters are the same inv(p, read, X)
- Two response events are the same if invoker, invokee, response are the same resp(p, read, X, 1)

- consistency \rightarrow specifies what behaviour is allowed when a shared object is accessed by multiple processes

- · "consistent" = satisfies the specification
- **history** $H \rightarrow$ a sequence of invocations and responses ordered by wall clock time
 - for any invocation H, the corresponding response must be in H
 - each execution of a parallel system corresponds to a history and vice versa
- sequential \rightarrow an invocation is always *immediately* followed by its response
- no interleaving (else is concurrent)
- Sequential:

inv(p, read, X) resp(p, read, X, 0) inv(q, write, X, 1) resp(q, write, X, OK)

concurrent:

inv(p, read, X) inv(q, write, X, 1) resp(p, read, X, 0) resp(q, write, X, OK)

- a history H is $\mbox{legal} \rightarrow$ if all responses satisfies the sequential semantics of the data type
 - sequential semantics → the semantics you would get if there is only one process accessing that data type
 - possible for sequential history to not be legal
 - e.g. x=0, P1 writes 1 to x, P2 reads 0 from x (if it were the same thread it would have been the same value)
- process p's process subhistory of H, H|p → the subsequence of all events of p
 process subhistory is always sequential
- object o's **object subhistory** of $H, H|o \rightarrow$ the subsequence of all events of o
- two histories are $\ensuremath{\mathsf{equivalent}}\xspace$ \rightarrow if they have the exact same set of events
 - same events \Rightarrow implies all responses are the same
 - may be different ordering of events (only care about responses)

+ process/program order \rightarrow a partial order among all events

- within the same process, process order is the same as execution order
 no other additional orderings
- sequential consistency \rightarrow equivalent to some legal sequential history that preserves process order
 - (Lamport's definition) results are same as in some sequential order & preserves
 program order

Linearisability

- stronger than sequential consistency
- **external order** \rightarrow a history H induces the "<" partial order among operations
- o1 < o2 ⇐⇒ the response of o1 appears in H before the invocation of o2
 aka o1 finishes before o2 starts
- preserves external order \Rightarrow preserves program order
- **linearisability** \rightarrow sequentially consistent (with some legal sequential history S) and S preserves the external order in H
 - (alternate definition) The execution is equivalent to some execution such that each operation happens instantaneously at some point between the invocation and response
 - for every operation in the execution, you can find a linearisation point

between the invocation and response event • linearisable ⇒ sequentially consistent

- local property
- Inearisability is a local property
 - H is linearisable \iff for any object x, H|x is linearisable
- useful because you can reason about objects instead
- sequential consistency is not a local property
 H may not be sequentially consistent, but H|x and H|y can be sequentially

consistent Sequential Consistency is Not Local Property

proof: linearisability is a local property

- using a directed graph: directed edge from o1
 ightarrow o2 if
 - o1 and o2 are on the same object x and o1 is before o2 when linearising H|x ($o1 \rightarrow o2$ due to obj)
 - o1 < o2 in external order ($o1 \rightarrow o2$ due to H)
- · any topological sorting of the graph gives us a legal sequential history S
- · any cycle must be composed of
 - edges to some object $x~(\approx 1~{\rm edge}~{\rm since}~{\rm H}|{\rm x}~{\rm is}~{\rm equivalent}~{\rm S}~{\rm with}~{\rm a}~{\rm total}~{\rm order})$
 - edges due to some H (≈ 1 edge since partial order induced by H is transitive)
 - edges due to some object $y~(pprox 1~{\rm edge})$
 - edges due to some H (pprox 1 edge)

Consistency definitions for registers

- **register** \rightarrow ADT: a single value that can be read and written
 - **atomic** \rightarrow if the implementation always ensures linearisability of the history
 - sequentially consistent \rightarrow if the implementation always ensures sequential consistency of the history
 - regular \rightarrow when a read
 - not overlap with any write, the read returns the value written by one of the most recent writes
 - overlaps with one or more writes, the read returns the value written by one of the most recent writes OR the value written by one of the overlapping writes

- safe \rightarrow if the implementation always ensures that
 - when a read does not overlap with any write, it returns the value written by one of the most recent writes
 - when a read overlaps with one or more writes, it can return anything
- ! atomic \Rightarrow regular \Rightarrow safe

Р

Q

- regular \Rightarrow sequentially consistent; sequentially consistent \Rightarrow regular
 - write(1) read(0)
 Sequentially consistent but not regular

04. MODELS & CLOCKS

- process can perform 3 kinds of atomic events/actions
 - · local computation
 - send a single message to a single process
- receive a single message from a single process

communication model

- · point-to-point (to send to multiple processes: multiple send events)
- · error-free, infinite buffer
- · potentially out of order
- · software clocks
 - capture event ordering that are visible to users who do not have physical clocks
 - · allows a protocol to infer ordering among events

visible orderings

- process order \rightarrow if A and B are on the same process, I can tell that A is before B
- **send-receive order** \rightarrow the send event must be before the receive event
- transitivity \rightarrow if A<B and B<C, then A<C

- happened-before relation (denoted $e \rightarrow f$) captures the ordering that is visible to users when there is no physical clock
 - · partial order among events
- **concurrent-with** relation (denoted e||f) if $\neg(e \rightarrow f) \land \neg(f \rightarrow e)$

Logical Clocks

- · each event has a single integer as its logical clock value
- each process has a local counter C
- protocol
 - increment C at each local computation and send event
 - send event: attaches the logical clock value V to the message
 - receive event: $C = \max(C, V) + 1$
- if event s happens before event $t \Rightarrow C_s < C_t$
 - $C_s < C_t \Rightarrow s$ happens before t

- · for total order, extend with process number
- s.c denotes the value of c in state s, s.p indicates the process it belongs to
- the timestamp of any event is a tuple (s.c, s.p)

$$\bullet \ (s.c,s.p) < (t.c,t.p) \iff (s.c < t.c) \lor ((s.c = t.c) \land (s.p < t.p))$$

Vector Clocks

- event s happens-before event $t \iff C_s < C_t$
- each event has a vector of n integers as its vector clock value
 - v1 = v2 if all n fields are the same
 - $v1 \leq v2$ if every field in v1 is less than or equal to the corresponding field in v2• e.g. (3,1,5)≤(4,1,7)
 - (< is NOT a total order here) • v1 < v2 if $v1 \le v2$ and $v1 \ne v2$
- each process i has a local vector C
- protocol
 - increment C[i] at each local computation and send event
 - *i*th entry is the principle entry
 - process i is the only process that can create new values for the i^{th} entry

• send event: vector clock value V is attached to the message

Matrix Clocks

· each event has 1 vector clock for each process

 the ith process on vector i is called process i's principle vector protocol

- for principal vector C on process i,
 - increment C[i] at each local computation and send event
 - send event: all n vectors are attached to the message
 - receive event: C = pairwise-max(C, V); C[i]++
 - \cdot where V is the principle vector of the sender
- for non-principal vector C on process i
 - receive event: C = pairwise-max(C, V);

05. GLOBAL SNAPSHOT

 captures a snapshot of local states on n processes such that the global snapshot could have happened sometime in the past (user cannot tell the difference)

Consistent Snapshot

- **consistent snapshot** \rightarrow a snapshot of local states on n processes such that the global snapshot could have happened sometime in the past
 - can have outgoing $(L \rightarrow R)$ arrows, but can't have incoming $(R \rightarrow L)$ arrows

- global snapshot \rightarrow a set of events such that if e^2 is in the set and e^1 is before e^2
- in process order, then e1 must be in the set · a collection of local snapshots
- consistent local snapshot ightarrow a global snapshot s.t. if e2 is in the set and e1 is before e2 in send-receive order, then e1 must be in the set
- · aka global snapshot + any receive event in the set has its corresponding send event in the set
- · transitive relations implied

Characterization of Consistent Global Snapsht

capturing a CGS

- communication model
- no message loss
- · communication channels are unidirectional (model bidirectional channels as 2 unidirectional channels)
- FIFO delivery on each channel

ensuring FIFO

- · each process maintains a message number counter for each channel and stamps each message sent
- · receiver will only deliver messages in order

Chandy & Lamport's Protocol

- · each process is either
 - red has taken local snapshot
- white has not taken local snapshot
- · protocol initiated by a single process by turning itself from white to red

- once a process turns red, immediately send out Marker messages to all other processes
- upon receiving Marker, process turns red
- total n * (n 1) Marker messages
- requires FIFO marker messages are sent on the same channel as actual messages

on-the-fly messages: sent before sender's local snapshot, received after receiver's local snapshot

in this window – These are the exact set of messages that are only the "fly"

06. MESSAGE ORDERING

Causal Order

- causal order \to if s1 happened before s2, and r1 and r2 are on the same process, then r1 must be before r2

• $s_1 \rightarrow s_2 \Rightarrow \neg (r_2 \prec r_1)$

- FIFO \rightarrow any 2 messages from process P_i to P_j are received in the same order as they are sent

• $s_i \prec s_j \Rightarrow \neg (r_j \prec r_i)$

• $e \prec f$ denotes e occurred before f in the same process

• $s_i \rightsquigarrow r_i$ denotes s_i is the send event corresponding to receive event r_i

protocol: ensure causal order

- each process maintains a n by n matrix M
- M[i, j] = # of messages sent from *i* to *j*, as known by local (current) process • when process *i* sends a message to process *j*,
 - on process i: M[i, j]++
 - piggyback M on the message

• when process j (with local matrix M) receives a message from process i with matrix T piggybacked,

• set
$$M = \text{pairwise-max}(M, T)$$
 if
$$\begin{cases} T[k, j] \leq M[k, j] & \text{for all } k \neq \\ T[i, j] = M[i, j] + 1 \end{cases}$$

• intuition: M[i, j] on process j takes on consecutive values

 if the entry is >1 larger than the local entry, it means that there is another message in propagation

 \cdot we only care about column j - [i, j] should have a difference of 1 \bullet else, delay the message

• M never decreases!

• for broadcast messages, same protocol (modelled as n point-to-point messages)

Total Ordering of Broadcast Messages

broadcast → sent to all (including the sender itself)

 total ordering → all messages delivered to all processes in exactly the same order (aka atomic broadcast)

- i.e. if every message is assigned a number, the number has to be consistent across all users
- total ordering only applies to broadcast messages
- total ordering \neq causal ordering
 - causal ordering \Rightarrow total ordering

Coordinator protocol

- · a special process is assigned as the coordinator
- to broadcast a message:
 - send a message to the coordinator
 - coordinator assigns a seq # to the message

- · coordinator forwards the message to all processes with the sequence number
- messages delivered according to seq# order
 problem: coordinator has too much control

Skeen's Algorithm

- · each process maintains
 - logical clock
 - message buffer for undelivered messages
- · a message in the buffer is delivered/removed if
 - all messages in the buffer have been assigned numbers
 - · this message has the smallest number
- protocol
 - · process broadcasts a message
 - receiving processes put the message in buffer and reply (ACK) with their current logical clock value
 - sending process picks the max clock value as message number and notifies (broadcasts) message number

correctness proof

- claim: all messages will be assigned message numbers
- · claim: all messages will be delivered
- claim: if message A has number smaller than B, then B is delivered after A

key: Process 3's logical clock now must be larger than B's number

- Suppose A is delivered on process 3 after B.
- Then A must have been placed in buffer after B was delivered
- A must have a number larger than B Contradiction.

07. LEADER ELECTION

· leader election trivially solves mutual exclusion and total order broadcast

Leader Election on a Ring

anonymous ring

- **anonymous ring** \rightarrow no unique identifiers
- all must run the same algorithm (otherwise the algo itself is the unique ID)
 node can only send messages to its neighbours
- leader election impossible using deterministic algorithms
- same: initial state, state at each step, final state, algorithm on each node

Chang-Roberts Algorithm

- idea: largest ID is the leader
- each node has a unique ID
- nodes only send messages clockwise
- protocol:
 - node sends an election message with its own ID clockwise
 - a node forwards an election message if the ID is larger than its own ID

otherwise discard

- a node becomes a leader if it sees its own election message
- performance
- best case: 2n 1 messages
- worst case: $\frac{n(n+1)}{2}$

• average case: $O(\tilde{n} \log n)$

- taken over all possible orderings of nodes, each ordering having the same probability
 - (n-1)! total orderings of the IDs
- let x_k = number of messages caused by node k's election message • we want to find $E[x_k]$ for all k from 1 to n

• by linearity of expectation,
$$E[\sum x_k] = \sum E[x_k]$$

•
$$E[x_k] = \sum_{i=1}^k (i \cdot Pr[x_k = i])$$

- $Pr[x_k = 1] = Pr[\text{next node has larger ID than } k] = \frac{n-k}{n-1}$
- $E[x_k] \leq E[y] = \frac{1}{p} = \frac{n-1}{n-k}$ where y is a random variable denoting the number of lottery tickets we need to buy until winning the lottery (of probability p) for the first time
- $\sum_{k=1}^{n} E[X_k] = n + \sum_{k=1}^{n-1} E[X_k] < n + \sum_{k=1}^{n-1} \frac{n-1}{n-k} = n + (n-1)\sum_{k=1}^{n-1} \frac{1}{k} = n + (n-1)O(\log n) = O(n\log n)$

$k + (k - 1) \sum_{k=1}^{k} k = k + (k - 1) O(\log k) = O$

Leader Election on a General Graph

n is known

- complete graph
- each node sends its ID to all other node
- wait until you receive n IDs biggest ID wins
- any connected graph
 - flood your ID to all other nodes
 - ask neighbours to recursively forward ID to other neighbours
- wait until you receive n IDs biggest ID wins

n is unknown

- complete graph: n must be known
- any connected graph: use an auxiliary protocol to calculate n
 - initiated by any node that wants to know n
 - · establish a spanning tree starting from the initiator

spanning tree to calculate n

- · goal: each node knows its parents and children
- it's fine if multiple nodes initiate this process you're just counting \boldsymbol{n}
- 1. construct spanning tree: initiator sends child requests
 - if node has not ACKed, sends ACK and send child requests to its neighbours

• if node has already ACKed, reject the request

count nodes: initiator sends do-count request
 recursive: children will respond with 1 + the number of children they have

msg for 7

4

5

08. DISTRIBUTED CONSENSUS

goal

- $\ensuremath{\textit{termination}}\xspace \rightarrow$ all nodes (that have not failed) eventually decide
- agreement \rightarrow all nodes that decide should decide on the same value if a node agrees then crashes, still satisfy the agreement
- validity \rightarrow if all nodes have the same initial input, that value should be the only possible decision value
 - otherwise can decide on anything (but still satisfy Agreement)

v0. no failures

trivial

v1. Node crash failures

model

- failure model
 - × node crash failures
 - node runs the algo, but stops executing at some arbitrary point in time
 - \checkmark communication channels are reliable

timing model

- \checkmark communication channels are synchronous
 - message delay has a known upper bound x
 - node processing delay has a known upper bound y (given as an input)

synchronous systems and rounds

- each round, every process:
 - 1. does some local computation (local processing delay)
 - sends one message to every other process (message propagation delay)
 receives one message from every other process
- round duration = clock error + msg propagation delay + local processing delay
 assume each process has a physical clock with some bounded clock error
- start a new round every ROUND_DURATION seconds
 - according to local clock
- · each message has a round number attached to it
 - a message sent in a round must be received by the end of that round on the receiver

input = 2 input = 1 input = 3

{2, 3}

1, 2, 3

if receiver receives a message before it even starts the round: buffer the message until round starts

protocol

- · protocol: at each round, keep forwarding the values received
 - · each process sends its input to all others
 - pick the min (or max)

- f+1 rounds needed for f failures

- 1 round will be failure-free
- lower bound $\Omega(f)$
- f must be an input to the protocol
 user indicates maximum number of fail ures to be tolerated

with f + 1 rounds and f failures, there must be at least one good round
 claim: At the end of any good round r, all non-faulty nodes during round r have the same S

round '

{1, 2, 3}

- claim: Suppose r is a good round. The value of S on any non-faulty nodes does not change during any round after r.
- claim: All nonfaulty processes at round f+1 will have the same S

v2. Link failures (Coordinated Attack)

model

- · failure model
 - ✓ nodes do not fail
- × communication channels may fail drop arbitrary (unbounded) # of msgs · timing model
- √ synchronous
- goal: termination/agreement/validity
 - · impossible to achieve these using a deterministic algorithm
 - cos communication channel can drop all messages
 - execution α is **indistinguishable** from execution $\beta \rightarrow$ if the node sees the same messages and inputs in both execution

input =1

decision = 1

input =1

decision = 1

v2.1. Weakened goal

still impossible using deterministic algo

- if all nodes start with 0, the decision = 0
- · if all nodes start with 1 and no message is lost during execution, decision = 1
- · otherwise, any consensus

v2.2. Limited disagreement (small error)

 goal termination

- agreement: all nodes decide on the same value with probability $1-\epsilon$
- validity
 - if all nodes start with 0. decision = 0
 - if all nodes start with 1 and no message is lost throughout, decision = 1 else: anything
- · adversary maximises error probability
 - ✓ set inputs of the processes
 - √ cause message losses
 - × does not know the outcome of any randomisation

randomised algorithm

2 processes (P1, P2), predetermined number (r) of rounds

- adversary determines which messages are lost before seeing random choices protocol P1 P2
 - P1 picks a random integer $bar \in [1..r]$
 - each P1, P2 maintains a *level* variable L1, L2
 - . L1 and L2 differ by at most 1 · each round: send each other messages
 - attach input, bar and level to each message
 - P1: set L1 = L2+1
 - · (symmetric) same for P2
 - ! L1/L2 never decreases!

- decision rule: after r rounds, P1/P2 decide on 1 \iff
- it knows its input and the other process input are both 1
- it knows bar (always true for P1)
- its level > bar

Inductive Proof for the Lemma

• error probability $\epsilon = \frac{1}{2}$

When does error occur?

v3. Node crash failures + Asynchronous

model

input =1

because

los

because of

intuition: will not be aware th

these 2 executions an indistinguishable for E

round 1

round 2

round 3

decision = 1

ndistinguishable

- failure model
 - 🗸 reliable channe
 - × node crash failures
- timing model
 - **asynchronous** \rightarrow process delay and message delay are *finite but unbounded*
 - can no longer define a round
- · goal: termination/agreement/validity

• **FLP theorem** (Fischer, Lynch, Paterson) \rightarrow the distributed consensus problem under asynchronous communication model is impossible to solve even with a single node crash failure

· fundamentally, because the protocol cannot accurately detect node failure

formalisms of FLP theorem

- · global state of a system = all process states + message system state
 - · message system captures on-the-fly messages:
 - $\{(p, m) | \text{message } m \text{ on the fly to process } p \}$
 - all messages are distinct
 - · sending and receiving operations are adding and removing content from the message system, and changing process local state

· each step given a global state is fully described by p's receiving m

- (p, m) is an event
- · events are inputs to the state machine, that cause state transitions
- event e can be applied to the global state G if either m == null or (p, m) is in the message system
- · execution of any protocol is an infinite sequence of events process fail = finite number of steps
- schedule σ is a sequence of events that captures the execution of a protocol
 - $G' = \sigma(G)$ means we apply σ to G to get G'
 - must make sure σ can be applied to G (aka G' is **reachable** from G if $\exists \sigma$ such that $G' = \sigma(G)$
- · messages have unbounded but finite delay every message is eventually delivered

v4. Node Byzantine failures

model

- failure model
 - v reliable channels
 - \times byzantine failures \rightarrow nodes can behave unexpectedly and arbitrarily

· must consider the worst case where nodes intentionally break the protocol timing model

- ✓ synchronous
- · goal: termination/agreement/validity for non-faulty nodes only
 - · agreement: bad nodes can't be forced to decide

- validity: if all the good nodes have the same initial input, that value should be the only possible decision value
- byzantine consensus threshold for *n* processes, *f* possible byzantine failures • if $n \leq 3f$, then the byzantine consensus problem cannot be solved

protocol for $n \ge 4f + 1$

intuition

- rotating coordinator: process i is the coordinator for phase i
- · coordinator sends a proposal to all processes
- a phase is a deciding phase if the coordinator is nonfaulty · agreement after a phase with a good coordinator
 - · if the coordinator is non faulty, all processes see the proposal

protocol

- f + 1 phases (cos at most f bad nodes)
 - · each phase is 2 rounds
- set local value = input

overwhelming majority

termination: after f+1 phases

• validity: follows from lemma 1

agreement achieved

· agreement:

end of that phase

- each phase
 - round 1: all-to-all broadcast
 - send your local value to all processes
 - round 2: coordinator round
 - · set proposal to majority (> n/2)
 - send the proposal to everyone
 - · decide whether to listen to the coordinator

given phase, then this remains true at the end of a phase

• case 1: coordinator sees (and proposes) a majority=x

• thus other processes will see x (>n/2-f) times

· case 2: coordinator receives equal distribution

• with f+1 phases, at least one is a deciding phase

Failure Model and Timing Model

Ver 1: Node crash failures: Channels

Ver 3: Node crash failures: Channels

Channels are reliable: Synchronous:

(the Byzantine Generals problem)

Ver 2: No node failures; Channels may

Ver 0: No node or link failures

drop messages (the coordinated

are reliable: Synchronous

are reliable: Asynchronous

Ver 4: Node Byzantine failures:

attack problem)

· so no other value can be overwhelming majority

• for coordinator, no value x appears (>n/2) times

· by Lemma 2, all good processes will agree at deciding phase

· if overwhelming majority (> $\frac{n}{2} + f$), set local value to majority

• since we have n - f good processes and $n - f > \frac{n}{2} + f$, they will be the

· Lemma 2: if the coordinator in a phase is good, agreement will be achieved at the

· then it's impossible for anyone to see an overwhelming majority

• by Lemma 1, after a deciding phase, additional phases will not disrupt the

Summary

Consensus Protocol

Trivial – all-to-all broadcast

Randomized algorithm with 1/

mpossible (the FLP theorem)

If $n \ge 4f + 1$, we have a (2f+2)-

How about $3f+1 \le n \le 4f$?

(f+1)-round protocol can

tolerate f crash failures

Impossible without erro

If $n \leq 3f$, impossible

round protocol

error prob

• then x appears (>n/2) times, of which >n/2-f must be from good processes

• thus for other processes, impossible for any $y \neq x$ to appear (>n/2+f) times

· else, set local value = coordinator's proposal

proof · Lemma 1: if all good processes have the same local value at the beginning of a

10. SELF-STABILISATION

- state of a distributed system is either legal or illegal
- based on application semantics
- self-stabilising \rightarrow if
- starting from any (legal or illegal) state, the protocol will eventually reach a legal state if there are no more faults
- once in a legal state, it will only transit to a legal state unless there are faults
 typically runs in the background and never stops

Rotating Privilege Problem

- a ring of *n* processes
- each process can only communicate with neighbours
- at any time, only one node may have the privilege
- privilege is like a token

algorithm

- each process i has local integer variable V_i where $0 \le V_i \le k, k \ge n$
- one red process and some blue processes (allocate before running the algorithm)
- red process
 - retrieve value L of clockwise neighbour
 - if V == L: (has privilege)
 - increment V++ with mod k
- blue process
 - retrieve value L of clockwise neighbour
 - if $V \neq L$: (has privilege)
 - set V = L

legal states

- Lemma: there are only 2 legal states
- 1. all n values same \Rightarrow red process privilege
- 2. only 2 different values forming 2 consecutive bands, with one band starting from the red process \Rightarrow blue process privilege

Self-Stabilising Spanning Tree

- given n processes connected by an undirected graph and one special process P1, construct a spanning tree rooted at P1
- each process maintains 2 variables: parent and dist (to root, $\geq 0)$
 - · faults: wrong value of these variables

algorithm

- P1 repeatedly executes 'dist=0; parent=null;'
- all other nodes periodically execute
 - retrieve dist from all neighbours
 - set own $dist = 1 + \min(\text{neighbour dists})$
- set own parent = neighbour with smallest dist
 - break tie: based on ID (e.g. smaller ID)

proof

- $\textbf{phase} \to minimum$ time period where each process has executed its code at least once (can be more than once)
- assume that the topology doesn't change
 - i.e. no additional faults we only need to reason about self-stabilising algos if there are no additional faults
- let
 - A_i be the \mathbf{level} of process i (length of the shortest path from i to root) A_i will not change
 - $dist_i$ be the value of dist on i
 - $dist_i$ may change
- properties of levels of the nodes
 - 1. a node at level \boldsymbol{X} has at least one neighbour in level $\boldsymbol{X}-1$

- if there is a neighbour with level < X 1, then the node can have a smaller level < X
 2. a node at level X can only have neighbours in level X 1, X, X + 1

 for X-1: same proof as (1)
 if there is a neighbour with >X+1, then that node can be X+1 by going through the node instead

 lemma: at the end of phase r,

 any process i whose A_i ≤ r 1, has dist_i = A_i
 if level is < r, the distance value must become correct (i.e. dist=level)

 2. any process i whose A_i ≥ r, has dist_i ≥ r

 for the remaining processes, the distance value is > r and may still be
 - incorrect
- proof: by induction
 - base: holds for r = 1
 - assume lemma holds at phase r and consider phase r+1

common self-stabilisation proof technique

- Step 1: Prove that the *t* actions will not roll back what is already achieved so far by phase r (no backward move)
- Step 2: Prove that at some point, each node will achieve more (forward move)
- Step 3: Prove that the *t* actions will not roll back the effects of the forward move after the forward move happens (no backward move after the forward move)