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Introduction

This course: A short refresher on linear algebra, meant to prepare
you for CME 302, CME 200, or other courses involving linear
algebra.

Prerequisites: Some level of exposure to linear algebra in your
undergrad career.

Hopefully most of what you’ll see is review, but if we’re ever going
too fast (or slow), ask a question!

When: Tues/Wed/Thurs, 10:30am - 11:45am.

Slides and material accessible at:
http://stanford.edu/~tym1/refresher/index.html.

Much of the material is shamelessly re-used from offerings of
previous years (in particular, Victor Minden’s slides 2014 slides).
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Useful Resources

Matrix Computations 3ed by Golub and Van Loan.
There’s also a 4th ed available. An encyclopedia of nearly
everything you need to know, but not particularly
light-reading material.

Numerical Linear Algebra by Trefethen and Bau.
Easier to read book with many useful exercises and a more
’conversational’ tone.

A First Course in Numerical Methods by Chen Greif and Uri
Ascher.
Broader focus than just numerical linear algebra, but good for
first-time exposure to computational aspects of linear algebra.
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Introduction

A little about me:
I’m a third-year ICME PhD student working in linear algebra and
optimization.

Email: restrin@stanford.edu.
Webpage: http://stanford.edu/~restrin.

Let’s begin!
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Vector Spaces

Definition

A vector space is a set V and field F with a binary operation
addition (u + v = w ∈ V for all u, v ∈ V ), and scalar
multiplication (αu = v ∈ V for all u ∈ V , α ∈ F) such that the
following axioms hold:

Commutativity: u + v = v + u

Associativity: (u + v) + w = u + (v + w)

Additive identity: There exists 0 ∈ V s.t. v + 0 = v , ∀v ∈ V

Additive inverse: ∀v ∈ V there exists w ∈ V s.t. v + w = 0

Multiplicative identity: There exists 1 ∈ F s.t. 1v = v , ∀v ∈ V

Distributativity: α(u + v) = αu + αv and (α + β)v = αv + βv
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Subspaces

Definition

A subspace U of a vector space V (with the field F) is a subset
U ⊆ V such that 0 ∈ U and

Closed under addition: u + v ∈ U for all u, v ∈ U

Closed under scalar multiplication: αv ∈ U for all v ∈ U

Important: A subspace is itself a vector space.
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Examples of vector spaces

Euclidean space: (Everyone’s favourite) Rn or Cn (columns
of numbers).
Example subspace: Choose set αi ∈ R, then
U = {x ∈ Rn |

∑n
i=n αixi = 0} is a subspace.

Generally we’ll discuss Euclidean space with either Rn or Cn.

Continuous real-valued functions on [0,1].
Example subspaces: Polynomials of degree ≤ n (Pn(x)),
U = {f ∈ C[0, 1] | f (0) = f (1) = 0}.
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Span of vectors

Definition

The span of a set of vectors is the subspace of all linear linear
combinations of those vectors

span {v1, . . . , vk} =

{
w | w =

n∑
i=1

αivi

}
.

Examples:

span


1

0
1

 ,

 1
0
−1

 =


α1

0
α2

 | α1, α2 ∈ R

 .

span
{
{x2k | k ∈ N}

}
= {Polynomials with even degree terms}
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Linear independence/dependence

Definition

A set of vectors {vi}ni=1 is linearly independent if

n∑
i=1

αivi = 0 =⇒ αi = 0, i = 1, . . . , n.

Otherwise, the set is linearly dependent.

Linearly dependent sets are redundant, since we can represent any
vector (if αj 6= 0) as

vj =
1

αj

∑
i 6=j

αivi .
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Linear independence/dependence

Examples:

The set {v1, v2, v3} =


1

2
1

 ,

 1
1
−1

 ,

2
3
0

 is linearly

dependent since v1 + v2 − v3 = 0.

The set {v1, v2, v3} =


2

2
1

 ,

 1
1
−1

 ,

2
3
0

 is linearly

independent.
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Bases

Definition

A set of vectors {vi}ni=1 generates a vector space U if
span {vi} = U.

Definition

A set of vectors {vi}ni=1 is a basis for a vector space U if
span {vi} = U and the set {vi}ni=1 is linearly independent.

With a basis, we can express any u ∈ U in the basis {vi}ni=1 as

u =
n∑

i=1

αivi ,

for some coefficients αi .
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Dimension of a vector space

Definition

The dimension of a vector space V is the number of vectors in
any fixed basis of V ,

dim(V ) = |vectors in basis of V | .

Remember: The dimension depends only on the vector space, not
on the basis!

Not all vector spaces are finite dimensional (e.g. space of
continuous functions), but for numerical linear algebra, we’ll
generally only care about the finite-dimensional ones.

Ron Estrin Lecture 1: Preliminaries



13/47

Example bases

One basis for Pn(x) is the set of monomials {1, x , x2, . . . , xn}.

Another basis for the same space is the set of Chebyshev
polynomials of the first kind, {P0,P1, . . . ,Pn}:

P0(x) = 1

P1(x) = x

Pn(x) = 2xPn−1(x)− Pn−2(x).

In both cases, the cardinality of the basis sets is n + 1, so the
dimension of the space is n + 1.

Although they span the same space, these bases have very different
properties!
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Inner product space

Definition

An inner product space is a vector space V with a defined inner
product

〈·, ·〉 : V × V → F,

such that the following properties hold:

Conjugate symmetry: 〈u, v〉 = 〈v , u〉
Linearity in first argument: 〈αu + v ,w〉 = α 〈u,w〉+ 〈v ,w〉 .
Positive-Definiteness: 〈u, u〉 ≥ 0 with equality iff u = 0.

Formal definition for ‘products of vectors’.
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Inner product space

Examples:

Dot-product for Cn: (Everyone’s favourite) Defined as

〈u, v〉 =
n∑

i=1

ūivi = v∗u.

Also known as the `2 inner product.

L2 inner product for functions on [0, 1]. Defined as

〈f , g〉L2 =

∫ 1

0
f (x)g(x)dx .
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Norms

Definition

A norm on a vector space V is a function ‖·‖ : V → R+ ∪ 0 such
that the following properties hold:

Absolute homogeneity: ‖αv‖ = |α| ‖v‖ for all α ∈ F and
v ∈ V

Sub-additivity (triangle inequality): ‖u + v‖ ≤ ‖u‖+ ‖v‖
Nondegeneracy: ‖v‖ = 0 iff v = 0

Norms generalize the idea “length” of vectors. All norms are
convex functions.
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Norms

Examples:

Euclidean norm: Defined as

‖u‖2 =

(
n∑

i=1

|ui |2
) 1

2

= u∗u.

Also called the `2-norm. An example of a norm defined by an
inner product.

`p-norm: Defined as

‖u‖p =

(
n∑

i=1

|ui |p
) 1

p

.

`∞-norm: Define as

‖u‖∞ = max
1≤i≤n

|ui |.
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Euclidean inner product and geometry

Let u and v be two vectors, with angle θ in between. The
Euclidean norm is exactly the usual notion of ‘length’ of a vector,
and the inner product satisfies

〈u, v〉2 = ‖u‖2 ‖v‖2 cos θ.
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Exercises

1 Prove that every inner product defines a norm. That is, show
that

‖u‖ = (〈u, u〉)
1
2 ,

is a norm.

2 Prove the cosine law. If a, b, c are the sides of the triangle,
and θ is the angle between a and b, then

|c|2 = |a|2 + |b|2 − 2|a||b| cos θ.
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Important inequalities

Triangle Inequality:

‖u + v‖ ≤ ‖u‖+ ‖v‖ .

Reverse Triangle Inequality:

‖u − v‖ ≥ |‖u‖ − ‖v‖| .
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Important inequalities

Cauchy-Schwarz Inequality: Let the norm ‖·‖ be induced by the
inner product 〈·, ·〉. Then

| 〈u, v〉 | ≤ ‖u‖ ‖v‖ .

It basically says that the size of the inner product is bounded by
the product of the size of the vectors themselves.

Recall that for the Euclidean inner product,

〈u, v〉2 = ‖u‖2 ‖v‖2 cos θ.

Since 0 ≤ | cos θ| ≤ 1, Cauchy-Schwarz clearly holds, and we can
observe when sharpness occurs: when θ = 0.
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Definition

Vectors u, v are orthogonal with respect to an inner product if

〈u, v〉 = 0.

For the Euclidean inner product, this is the usual notion of
orthogonality, i.e. two vectors are orthogonal if θ = π/2 since

〈u, v〉2 = ‖u‖2 ‖v‖2 cos θ.
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Definition

An orthogonal basis is a basis {vi}ni=1 such that 〈vi , vj〉 = 0 for
i 6= j . A basis is orthonormal if it is orthogonal and additionally,
〈vi , vi 〉 = 1 for all i .

Definition

Two vector spaces U and V are orthogonal if 〈u, v〉 = 0 for all
u ∈ U, v ∈ V .
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Orthonormal bases

Orthonormal bases {qi}ni=1 are really nice for several reasons.
Consider computing the inner product of u =

∑n
i=1 αiqi and

v =
∑n

j=1 βjqj .

〈u, v〉 =

〈
n∑

i=1

αiqi ,
n∑

j=1

βjqj

〉

=
n∑

i=1

αi

〈
qi ,

n∑
j=1

βjqj

〉

=
n∑

i=1

n∑
j=1

αi β̄j 〈qi , qj〉

=
n∑

i=1

αi β̄i .

We can compute the norm ‖u‖2 =
∑n

i=1 |αi |2.
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Vector projection

The vector projection of a vector u onto a vector v is

projv (u) =
〈u, v〉
〈v , v〉

v = (‖u‖ cos θ) v̂ ,

where v̂ = v/ ‖v‖.
The projection points along v , with magnitude equal to the inner
product between u and v .
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Gram-Schmidt Process

The Gram-Schmidt Process is a way to form an orthonormal
basis {vi}ni=1 from a set of vectors {ui}ni=1, so that

span {v1, . . . , vk} = span {u1, . . . , uk}

for all k . The main idea is that given an orthonormal basis
{v1, . . . , vk−1}, then

uk − projv1(uk)− · · · − projvk−1
(uk) ⊥ span {v1, . . . , vk−1} .
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Matrices

Pretty much everything we’ve talked about for vectors so far
applies to matrices:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn

 ∈ Fm×n
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Operations on Matrices

As long as your dimensions make sense, you can:

Add/Scalar multiply: C = αA + B ⇐⇒ cij = αaij + bij

Transpose: AT ∈ Fn×m where (AT )ij = aji

(Complex) Adjoint: A∗ ∈ Cn×m where (A∗)ij = āji

Multiply vector by matrix:

(Ax)i =
n∑

j=1

aijxj

Multiply matrix by matrix:

(AB)ij =
n∑

k=1

aikbkj
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Matrix-Vector multiplication

Few ways to think about it:

As dot-products with rows,

Ax =


−rT1 −
−rT2 −

...
−rTm−

 x =


rT1 x
rT2 x

...
rTm x


As linear combination of columns,

Ax =

 | | |
c1 c2 . . . cn
| | |



x1
x2
...
xn


= x1

 |c1
|

+ x2

 |c2
|

+ · · ·+ xn

 |cn
|


Ron Estrin Lecture 1: Preliminaries
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Matrix-Vector multiplication

Row vector multiplication is similar but reversed:

As linear combination of rows,

xTA =
(
x1 x2 · · · xm

)

−rT1 −
−rT2 −

...
−rTm−

 =
m∑
i=1

xi r
T
i

As dot-products with columns,

xTA =
(
x1 x2 · · · xn

) | | |
c1 c2 . . . cn
| | |


=
(
xT c1 xT c2 · · · xT cn

)
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Matrix-Matrix products

Approximately 171985318 different ways to think about AB, so
pick whatever is most convenient:

The usual entry-wise dot-product approach

A applied to columns of A

B applied to rows of A

As a sum of outer products:

AB =

 | | |
a1 a2 · · · an
| | |



−bT1 −
−bT2 −

...
−bTn −

 = a1b
T
1 + . . . anb

T
n

Blocking, ...

Ron Estrin Lecture 1: Preliminaries



32/47

Special Matrices

Diagonal, Triangular

Orthogonal (Real) and Unitary (Complex): Q∗Q = I

Symmetric (Real) and Hermitian (Complex): A∗ = A

Normal: AA∗ = A∗A

Symmetric (or Hemitian) Positive Definite: A = A∗ and
x∗Ax > 0 for x 6= 0. Also called SPD or HPD.

Projection: P2 = P

Rotation:

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
.

Rotates a point by an angle θ. Note: Also orthogonal.
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SPD Matrices

SPD matrices induce an inner product and therefore a norm as well
(often called the energy-norm):

〈u, v〉A = uTAv

‖u‖A =
√
〈u, u〉A

These kinds of inner products come up quite often in applications,
as well as in some methods for solving linear systems (e.g. the
conjugate gradient algorithm). Keep it in mind!
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Matrix norms

Same definition as vector norms (homogeneity, sub-additivity,
nondegeneracy). Additional common property is
sub-multiplicativity (but not required): ‖AB‖ ≤ ‖A‖ ‖B‖.

Induced norm: Given norm ‖·‖ on vector, can define matrix
norm as

‖A‖ = sup
‖x‖=1

‖Ax‖ .

Can define `p-norm on matrices this way.

Frobenius norm:

‖A‖F =

√∑
i ,j

|Aij |2 = tr (A∗A)

Max norm:
‖A‖max = max

ij
|Aij |

This norm is not sub-multiplicative.
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Matrix norms

Some induced norms have simpler expressions.

`1-norm
‖A‖1 = max absolute column-sum.

`∞-norm
‖A‖∞ = max absolute row-sum.
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Linear Transformations

Just like vector spaces aren’t just columns of numbers, linear
transformations are more than just matrices.

Definition

A linear transformation from a vector space V to vector space U
is a map T : V → U such that for all v1, v2 ∈ V

T (α1v1 + α2v2) = α1T (v1) + α2T (v2).

Note that this implies that T (0) = 0 for any linear transformation.

Examples:

Matrix-vector multiplication

Differentiation of differentiable functions.
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Linear Transformations

Any linear transformation T : V → U on a finite-dimensional
vector space can be expressed as a matrix once a basis for V and
U is decided upon.

So if transformation Ti is expressed by the matrix Ai , function
composition T2(T1(·)) is just matrix multiplication A2 · A1!
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Exercise

1 Prove the sin addition identity:

sin(θ + φ) = sin θ cosφ+ cos θ sinφ.

Recall that a rotation matrix is

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
.

2 Verify that if A is SPD, then 〈u, v〉A = uTAv is a valid inner
product.
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The range of a matrix

Definition

Let A ∈ Rm×n. The range (or “column-space”) is a subspace of
Rm given by

R(A) = {Ax | x ∈ Rn}
= span {columns of A}

This is indeed a subspace. Note that if b /∈ R(A), then no x exists
such that Ax = b.
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The rank of a matrix

Definition

The rank of a matrix A is the dimension of its range:
rank (A) = dim(R(A)).

Theorem:
The dimension of the column space of A is the same as the
dimension of the column space of AT (the row-space),

rank (A) = rank
(
AT
)
.
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The null-space of a matrix

Definition

Let A ∈ Rm×n. The null-space (or “kernel”) is a subspace of Rn

given by
ker(A) = {x ∈ Rn | Ax = 0} .

The dimension of the null-space, dim(ker(A)) is called the nullity
of A.
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The rank-nullity theorem

Theorem

Let A ∈ Rm×n. Then

rank (A) + dim(ker(A)) = dim(Rn) = n.

This is the rank-nullity theorem.
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The four fundamental subspaces

Definition

Let A ∈ Rm×n. The four fundamental subspaces of A are the
range and null-spaces of A and AT :

R(A) ⊆ Rm

ker(A) ⊆ Rn

R(AT ) ⊆ Rn

ker(AT ) ⊆ Rm

Theorem: R(A) and ker(AT ) are orthogonal (R(A) ⊥ ker(AT ))
with respect to the `2 inner product.

Proof: Let v ∈ R(A) and u ∈ ker(AT ). Then v = Aw for some
w , and

vTu = wTATu = wT (ATu) = 0.
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The Fundamental Theorem of Linear Algebra

Theorem

Let A ∈ Rm×n. The four fundamental subspaces satisfy

R(A) ⊥ ker(AT ) and R(A) ∪ ker(AT ) = Rm

R(AT ) ⊥ ker(A) and R(AT ) ∪ ker(A) = Rn

Figure next page: The four subspaces by Cronholm144 - Own
work. Licensed under Creative Commons Attribution-Share Alike
3.0 via Wikimedia Commons.
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The determinant

The determinant is a function of square matrices with a gross
entry-wise formula (best to look it up).

Properties:

det(A) = det(AT )

det(I ) = 1, and if Q is orthogonal, then det(Q) = ±1

det(AB) = det(A) det(B)

det(A) = 0 =⇒ dim(ker(A)) ≥ 1

det(c · A) = cn · det(A) for n × n matrices

det(L) =
∏n

i=1 lii if L is triangular

Intuition: det(A) is the volume of the parallelepiped formed by
the columns (or rows) of A.
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The trace

The trace is a function of square matrices defined as

tr (A) =
n∑

i=1

aii .

Properties:

tr (A + B) = tr (A) + tr (B)

tr (c · A) = c · tr (A)

tr (ABC ) = tr (CAB) = tr (BCA)
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ICME Linear Algebra Refresher Course
Lecture 2: Solving Linear Systems

Ron Estrin

September 22, 2016
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Focus of this lecture: Given matrix A ∈ Rm×n and vector b ∈ Rm,
want to find x ∈ Rn such that

Ax = b, ( or Ax ≈ b).

We have 3 cases:

No solution: b /∈ R(A). The system is inconsistent.

Infinitely many solutions: ker(A) is nontrivial. The system is
ill-posed.

Exactly one solution: Everything else.
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Applications

Solving PDEs via finite difference or finite elements.

e.g. 1D:−∇2u = f =⇒ −ui−1 − 2ui + ui+1

2
= fi .

Least-squares fitting: Fitting n parameters of linear model to
m� n datapoints.

Computational kernel for solving optimization problems.(
H AT

A 0

)(
x
y

)
=

(
f
g

)
.
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The matrix inverse

Definition

Let A be an n × n square matrix. A matrix A is invertible if there
exists a matrix A−1 such that

A−1A = AA−1 = I .

Some comments:

The inverse is unique.

The inverse doesn’t always exist. Matrices without inverses
are called singular.

Non-square matrices do not have inverses, but there are
suitable generalizations.
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The Invertible Matrix Theorem

The following statements are equivalent:

A is invertible (has an inverse).

det(A) 6= 0.

A has full rank, rank(A) = n.

Ax = 0 has only the solution x = 0.

ker(A) = {0}.
Ax = b has exactly one solution for each b.

The columns/rows of A are linearly independent.

0 is not an eigenvalue of A.

The columns/rows of A form a basis for Rn.

... and more.
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Exercises

Let A be a square matrix.

1 Prove that the left- and right-inverses of A are the same (if
AB = I and CA = I , then B = C ). Then prove that the
inverse is unique.

2 Prove that if A has full-rank, then an inverse exists.
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Solving Nonsingular Matrices

Let’s focus on square nonsingular matrices first: Ax = b.
Since A is nonsingular, it has an inverse and so

x = A−1b.

Theoretically, we can compute A−1 and apply it to b. This is in
general a bad idea:

Computing A−1 in finite precision can incur a lot of numerical
error (too inaccurate).

If we only want to solve one rhs, then computing A−1 may
result in unnecessary extra work (too too slow).
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Direct Solvers for Ax = b

Instead of inverting A and multiplying b, direct solvers use the
following strategy:

1 Factor A = A1A2 . . .Ak into a product of easy to solve
matrices Ai .

2 Set x (1) = b, and solve Aix
(i+1) = x (i), until we get x = x (k).

Classically we have k = 2, 3 factors (although some of the modern
approaches can have k very large).
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Easy to Solve Matrices

Some easy to solve matrices:

Diagonal matrices:

Dx = b =⇒ xi = bi/Dii .

Unitary matrices:

Qx = b =⇒ x = Q∗b.

Permutation matrices (Pei = eπ(i)):

Px = b =⇒ xi = bπ−1(i).

Lower (or upper) triangular matrices.
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Triangular Matrices

Want to solve
l11
l21 l22
l31 l32 l33
...

. . .

ln1 ln2 ln3 · · · lnn




x1
x2
x3
...
xn

 =


b1
b2
b3
...
bn


Can solve this via forward-substitution:

x1 = b1/l11,

x2 = (b1 − l21x1) /l22,

...

xn = (bn − ln1x1 − ln2x2 − · · · − ln,n−1xn−1) /lnn.
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Triangular Matrices

L is nonsingular as long as all diagonal entries are nonzero, so
the process will not fail.

The process is analogous for upper-triangular matrices. It is
called backward-substitution, which starts from the bottom
and works its way up.

Computationally cheap: O(n2) flops to solve.
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Common factorizations useful for solving linear systems:
LT: lower-triangular, UT: upper-triangular, Prm: permutation,
Orth: Orthogonal, Diag: Diagonal.

LU: A = LU
L is LT, U is UT.

Partial-pivoted LU: P1A = LU.
P1 is Prm, L is LT, U is UT.

Complete-pivoted LU: P1AP2 = LU.
P1,P2 are Prm, L is LT, U is UT.

QR: A = QR.
Q is Orth, R is UT.

SVD: A = UΣV ∗.
U,V are Orth, Σ is Diag.
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Gaussian Elimination

Gaussian Elimination for solving Ax = b:

Perform elementary row operations to turn [A|b]→ [U|y ]
where U is upper triangular.

Perform backward substitution on Ux = y .

Elementary row operations:

Scale a row.

Add a multiple of one row to another.

Permute rows.
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Gaussian Elimination on 3× 3 Matrix

1 Form augmented system [A|b].× × ×
× × ×
× × ×

×
×
×


2 Perform elementary row operation to introduce zeros below

the diagonal. × × ×
× × ×
× × ×

×
×
×

 L1−→

× × ×
0 + +
0 + +

×
+
+


× × ×

0 × ×
0 × ×

×
×
×

 L2−→

× × ×
0 × ×
0 0 +

×
×
+

 = [U|y ]

3 Solve the system Ux = y by back-substitution.
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Gaussian Elimination

Note that we didn’t pivot in the previous example, which may be
necessary if a zero-pivot (or a really small one) occurs.

This is in theory how to compute the LU factorization.

U is the resulting upper triangular matrix.

If we keep track of our row-operations, this would form the L
factor.

You’ll be going through this in gory detail in CME 302...
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Non-square or Singular Systems

We have two cases for Ax = b:

b /∈ R(A) and there is no solution.

Perhaps A ∈ Rm×n, m > n (tall-skinny or overdetermined)
Perhaps A is singular

ker(A) is nontrivial, and there are infinitely many solutions.

Perhaps A ∈ Rm×n, m < n (short-fat or underdetermined)
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Overdetermined Systems

We’ll set aside the case where A is rank-deficient for now.

Suppose that m > n and b /∈ R(A). Need a sense of what a
“good” solution is.

We can solve a Least-squares problem:

min
x
‖Ax − b‖2.

Define r = b − Ax as the residual.
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Least-Squares problem

Suppose we have m data points (xi , yi ), and we want to fit an
n − 1 < m degree polynomial

f (x) = a1 + a2x + a3x
3 + · · ·+ anx

n−1

to the data. This results in the Vandemonde matrix
1 x1 x21 . . . xn−11

1 x2 x22 . . . xn−12
...

...
...

. . .
...

1 xm x2m . . . xn−1m



a1
a2
...
an

 =


y1
y2
...
ym

 .
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Solving Least-Squares problems

If A ∈ Rm×n is tall-skinny but full rank (rank(A) = n), we can find
least-squares solution explicitly.

A
 x =

b
 =⇒

[
AT

] A
 x = ATAx =

[
AT

] b
 .

Notice that ATA is square and nonsingular. The system on the
right called the Normal equations. The least-squares solution is:

xLS = (ATA)−1ATb.

IMPORTANT: Forming the normal equations and solving them is
usually a very bad idea due to numerical errors. You’ll see proper
ways of solving LS problems your classes.
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Exercises

1 Show that P = A(ATA)−1AT is an (orthogonal) projector.
Recall that this means that P2 = P and P = PT . What space
does this operator project onto?

2 The least-squares solution is xLS = (ATA)−1ATb, and the
residual is r = b − AxLS . How does the residual relate to
R(A)?
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Alternative approaches for over-determined systems

Other common approaches include minimizing residual in the `1 or
`∞ norm. These don’t have closed-form solutions; they are linear
programs.

Minimizing in the `1 norm promotes sparsity in the residual (few
non-zero entries).

Minimizing in the `∞ norm promotes all of the residual entries to
be roughly the same size (but small).
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Moore-Penrose Pseudo-inverse

Definition

Let A be an m× n matrix. The Moore-Penrose pseudoinverse is
an n ×m matrix A† which satisfies

AA†A = A (AA†)T = AA†

A†AA† = A† (A†A)T = A†A.

When A is tall and skinny, A† = (ATA)−1AT .
This means that xLS = A†b.

When A is short and fat, A† = (AAT )−1A. This version will also
play a role soon.
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Underdetermined systems

Suppose instead we have m < n, b ∈ R(A), so that[
A
]
x = b.

If Ax̂ = b, and z ∈ ker(A), then A(x̂ + z) = b! We have infinitely
many solutions so how can we choose?

We can solve a minimum norm problem:

min
x
‖x‖2 s.t. Ax = b.

The solution is x = A†b again! (But don’t form the normal
equations!)
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Inconsistent and Singular systems

What if Ax = b is both a singular and inconsistent system (or A
has bad numerical properties)?

Typical approaches blend the two ideas we’ve covered via
regularization:

min
x
‖Ax − b‖22 + λ2‖x‖22. ⇐⇒ min

x

∥∥∥∥(A
λI

)
x −

(
b
0

)∥∥∥∥2
2

.

λ is a parameter which controls the trade-off between agreement
with the data and numerical stability.
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High Level View to Solving Linear Systems

Two approaches for Ax = b: Direct and Iterative methods.

Direct Methods:

Factor A into easy to solve matrices and solve against each
one.

e.g. LU, QR, SVD ...

Good for solving many right-hand sides efficiently (factor
once, solve many times).

Need matrix explicitly.
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High Level View to Solving Linear Systems

Two approaches for Ax = b: Direct and Iterative methods.

Iterative Methods:

Stationary Methods:

Update process xk+1 ← G (xk) to successively approximate
solution. G is some function satisfying certain conditions.
e.g. Jacobi, Gauss-Seidel, Successive Over-Relaxation

Search Methods:

Generate search space for solution, then approximate solution
within the search space by solving minimization problem.
Example minimization problem: minimize residual
e.g. Krylov subspace methods: CG, MINRES, GMRES ...
Requires only matrix-vector products with A.
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Conditioning and Stability

Consider a 2× 2 system

(
a b
c d

)(
x
y

)
=

(
f
g

)
. This is the

intersection of two lines (blue and black), solution is red dot.
Suppose we perturb the black line c → c + ∆c , d → d + ∆d , and
g → g + ∆g .

(a) Small perturbation to
problem, small perturbation to
solution.

(b) Small perturbation to
problem, large perturbation to
solution.
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Conditioning and Stability

Suppose we want to solve system Ax = b, and we end up solving
Ax̂ = b̂. Recall the residual is r = b − Ax̂ = A(x − x̂).
Then:

‖b‖2 = ‖Ax‖2 =⇒ ‖b‖2 ≤ ‖A‖2‖x‖2
‖x − x̂‖2 = ‖A−1r‖2 =⇒ ‖x − x̂‖2 ≤ ‖A−1‖2‖r‖2

This implies:
‖x − x̂‖2
‖x‖2

≤ ‖A‖2‖A−1‖2
‖r‖2
‖b‖2

.

Thus we obtain an upper bound on the forward error (which we
can’t compute) using the residual (which we can compute).
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The Condition Number

Definition

Given a nonsingular square matrix A, the quantity
κ(A) = ‖A‖2‖A−1‖2 is know as the condition number of A.

The condition number is a measure of how well-conditioned the
matrix A (i.e. how much perturbations in the data may perturb the
solution).

Rule of thumb: If the condition number is κ(A) ≈ 10p, then your
computed solution loses p digits of accuracy when using direct
methods. Example: If you have 16 digits of precision (e.g. double
type), and κ(A) ≈ 106, you typically expect 10 correct digits.
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Definition

The resolvent of a square matrix A is the matrix-valued mapping

R(z) = (A− zI )−1.

The entries of the resolvent are rational functions of the scalar z .
The resolvent fails to exist if z is a pole of any of these rational
functions (i.e. if A− zI becomes singular).

Definition

A scalar λ is an eigenvalue of the square matrix A if R(λ) does
not exist (i.e. A− λI is singular). A nonzero vector v is an
eigenvector of A associated with eigenvalue λ if v ∈ ker(A− λI )
or equivalently

Av = λv .
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The pair (λ, v) satisfying Av = λv form an eigenpair. The space
ker(A− λ) is called the eigenspace of A associated with
eigenvalue λ.

The set of eigenvalues

σ(A) = {λ ∈ C|A− λI is singular. }

is called the spectrum of A.
The spectral radius is the magnitude of the largest eigenvalue (in
magnitude)

ρ(A) = max
λ∈σ(A)

|λ|

How big can ρ(A) be?
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Neumann Series

Theorem

Let A be a square matrix with ‖A‖ < 1. Then I − A is nonsingular
and

(I − A)−1 =
∞∑
i=0

Ai ,

‖(I − A)−1‖ ≤ 1

1− ‖A‖
.

If |λ| > ‖A‖, then ‖A/λ‖ < 1,

‖R(λ)‖ = ‖(λI − A)−1‖ ≤ 1

|λ| − ‖A‖
<∞.

Thus ρ(A) ≤ ‖A‖ !
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Applications

PageRank

Graph Clustering

Schrödinger’s equation
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Similarity Transform

Two matrices are called similar if

B = X−1AX

where X is a nonsingular matrix.

A and B can be viewed as ’same’ linear transformation under
different bases. A and B have the same eigenvalues. If v is an
eigenvector of A, then X−1v is an eigenvector of B.
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Sylvester’s Law of Inertia (Symmetric matrices)

Two matrices are conjugate if

B = XTAX

where X is nonsingular (compare this to similarity).
The triple (n+, n−, n0) denoting the number of positive, negative
and zero eigenvalues respectively is called the inertia of A.

Sylverster’s law of Inertia says that the inertia of a matrix A is
preserved under conjugation.
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Computing Eigenvalues (not in practice!)

Definition

The characteristic polynomial is

χ(A; z) = det(A− zI )

=
n∏

i=1

(λi − z)

where λi are the (not necessarily distinct) eigenvalues of A.

Example:

A =

 9 0 −6
−1 4 2
2 1 2

 , A− zI =

9− z 0 −6
−1 4− z 2
2 1 2− z

 ,

χ(A; z) = −z3 + 15z2 − 72z + 108.
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Aside: Computing roots of polynomials

Suppose we want to compute the roots of the polynomial

p(t) = a0 + a1t + · · ·+ an−1t
n−1 + tn.

The companion matrix is

C (p) =


0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
. . .

...
...

0 0 · · · 1 −an−1

 .

Check that χ(A; z) = p(z), so that the eigenvalues of the
companion matrix are the roots of the polynomial.
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Computing Eigenvalues (not in practice!)

Once a root λ is found of χ(A; z), the corresponding eigenvector
satisfies v ∈ ker(A− λI ).

Example: The roots of χ(A) are λ = 3, 6, 6. For λ = 3,

A− 3I =

 6 0 −6
−1 1 2
2 1 −1

 =⇒ v1 =

 1
−1
1

 .
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Computing Eigenvalues (not in practice!)

A− 6I =

 3 0 −6
−1 −2 2
2 1 −4


∼

3 0 −6
0 −2 0
0 0 0

 =⇒ v2 =

2
0
1


Notice dim {ker(A− 6I )} = 1, even though λ = 6 is a double root
in the characteristic polynomial.
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Diagonalizable matrices

Definition

An n × n matrix A is diagonalizable if it has n linearly
independent eigenvectors.

If A has n eigenvectors that are also mutually orthogonal, we call A
unitarily diagonalizable.
Most square matrices (in a mathematically rigorous sense) are
diagonalizable. Important examples:

Symmetric matrices: A = AT

Normal matrices: AAT = ATA

Matrices with n distinct eigenvalues

Non-diagonalizable matrices are defective.
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Geometric vs. Algebraic multiplicity

Definition

The algebraic multiplicity of the eigenvalue λi is the multiplicity
of the root in the characteristic polynomial.
The geometric multiplicity of the eigenvalue λi is the dimension
of the associated eigenspace dim {ker(A− λi I )}.

Notice that always the geometric multiplicity is at most the
algebraic multiplicity.

Example: The algebraic multiplicity of λ = 6 is 2, but the
geometric multiplicity is 1.
This means that the matrix A is defective.
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Matrices for which it’s easy to find eigenvalues and eigenvectors:

Diagonal matrices (it’s already diagonalized!)

Triangular matrices
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Gershgorin’s Disc Theorem

The ith Gershgorin disc is a ball of radius ri =
∑

j 6=i |aij | centered
at aii in the complex plane,

Di =

z ∈ C | |z − aii | ≤
∑
j 6=i

|aij |

 .

Theorem

Every eigenvalue of A sits in a Gershgorin disc.
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Schur Decomposition

Definition

For all square matrices A, there exist unitary Q and
upper-triangular T such that

A = QTQ∗.

This is the Schur Decomposition.

Properties:

Since T is triangular its eigenvalues are on the diagonal and
T and A are similar, the eigenvalues of A are on the diagonal
of T .

This decomposition exists for all square matrices

Not unique
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Determinant and Trace Revisited

Exercise: Using the Schur Decomposition, find expressions for the
determinant and trace of a matrix in terms of its eigenvalues.

det(A) = det(QTQ∗)

= det(T ) =
∏

λ∈σ(A)

λ,

trace(A) = trace(QTQ∗)

= trace(Q∗QT ) =
∑

λ∈σ(A)

λ
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Eigenvalue Decomposition

Definition

If A is diagonalizable, then there exists an invertible matrix X and
diagonal matrix Λ such that

A = XΛX−1.

The eigenvalues of A are on the diagonal of Λ.

Properties:

If A is symmetric, then A is diagonalizable and X is
orthogonal. Furthermore the eigenvalues are necessarily real.

Exercise: Prove that the eigenvalue decomposition exists for
symmetric matrices.
Prove that the eigenvalues of a Hermitian matrix are real.

Unique up to ordering, but does not always exist!

For A SPD: xTAx ≥ 0, ∀x 6= 0 ⇐⇒ λ ≥ 0, ∀λ ∈ σ(A)
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Exercises

1 Given an eigenvalue decomposition of A = XΛX−1, how can
you compute An quickly?

2 The fibonacci sequence is defined by F0 = 0, F1 = 1 and
Fn = Fn−1 + Fn−2. Prove that

Fn =
φn + ψn

√
5

, φ =
1 +
√

5

2
, ψ =

1−
√

5

2
,

by using the matrix(
Fn
Fn−1

)
=

(
1 1
1 0

)(
Fn−1
Fn−2

)
.
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The Spectral Theorem

Theorem

A matrix A is unitarily diagonalizable if and only if it is normal,
that is it satisfies

AA∗ = A∗A.

This exactly classifies when there exists a unitary Q and diagonal Λ
such that

A = QΛQ∗.
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Jordan Canonical form

Definition

Let A be a square matrix with distinct eigenvalues λi with
algebraic multiplicity ai and geometric multiplicity gi . Define a
Jordan block as

Ji =


λi Igi−1

λi 1

λi
. . .
. . . 1

λi

 .

Then there exists a nonsingular matrix X such that A = XJX−1

where J = diag(Ji ).

For when the eigenvalue decomposition doesn’t exist.
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For symmetric (Hermitian) matrices, the eigenvalue decomposition
are extremely useful:

It always exists

Eigenvalues form an orthogonal basis of Cn

The eigenvalues are real

Eigenvalues give us the norm of A: ‖A‖2 = maxλ,
‖A‖F =

∑
λ.
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For general matrices:

Eigenvalue decomposition doesn’t necessarily exist. Schur and
Jordan form exist only for square matrices.

Defective matrices don’t have eigenvalues which span all of Cn

Eigenvalues may be complex

Eigenvalues no longer characterize A:

A =

(
1 α
0 1

)
has ‖A‖2 = O(α) but all eigenvalues are 1.

Need a better decomposition for general matrices...
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Singular Value Decomposition

Definition

Let A be an n ×m matrix (assume n ≥ m). There exist unitary
matrices U ∈ Cn×n and V ∈ Cm×m, and diagonal matrix
Σ = diag(σ1, . . . , σm), with σ1 ≥ . . . σm ≥ 0, such that

A = U

(
Σ
0

)
V ∗.

This is called the Singular Value Decomposition.

σi are the singular values

U = (u1, . . . , un) are the left singular vectors

V = (v1, . . . , vm) are the right singular vectors
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Singular Value Decomposition

Notice that we can then write A as a sum of outer products

A = σ1u1v
∗
1 + σ2u2v

∗
2 + · · ·+ σmumv

∗
m

Suppose that σk+1 = σk+2 = · · · = σm = 0 for some k .
We can make the economy-size SVD with σ1, . . . , σk > 0, and
we can split the singular vectors U = (U1, U2), V = (V1, V2) with

U1 = (u1, . . . , uk) and U2 = (uk+1, . . . , un),

V1 = (v1, . . . , vk) and V2 = (vk+1, . . . , vm)

so that

A = U1

σ1 . . .

σk

V ∗1 .
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Singular Value Decomposition

(Some) Properties:

It is unique (up to singular vectors with same singular value)

If rank(A) = k then σk+1 = · · · = σm = 0. Similarly, if
null(A) = n − k then n − k of the singular values are zero.

{u1, . . . , uk} form an orthogonal basis for range(A).

{uk+1, . . . , un} form an orthogonal basis for ker(A∗)

{v1, . . . , vk} form an orthogonal basis for range(A∗).

{vk+1, . . . , vm} form an orthogonal basis for ker(A)

‖A‖2 = σ1, ‖A−1‖2 = 1
σn

and ‖A‖F =
(∑k

i=1 σ
2
i

) 1
2
.
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More properties:

Condition number for square matrices: κ(A) = σ1/σn. In
general if A has rank k , then κ(A) = σ1/σk (or ∞ depending
on what you’re trying to do).

Eigenvalue decompositions:

A∗A = VΣ2V ∗, AA∗ = U

(
Σ2

0

)
U∗.

Pseudo-inverse:
A† = U1Σ−1V ∗1 .
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Geometric interpretation of SVD
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Exercises

1 How do the eigenvalues and singular values of A−1 relate to A
(for A invertible)?

2 Let A be a SPD matrix. What does this say about the
eigenvalues of A?
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Low-Rank Matrix Approximations

Theorem

Let A be an n ×m matrix, and k < min(m, n), then

min
rank(B)=k

‖A− B‖2 = σk+1,

and the minimum is attained by Ak =
∑k

i=1 σiuiv
∗
i .

Theorem

Let A be an n ×m matrix, and k < min(n,m), then

min
rank(B)=k

‖A− B‖F =

√√√√min(m,n)∑
i=k+1

σ2i ,

and the minimum is attained by Ak =
∑k

i=1 σiuiv
∗
i .
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Application: Principal Component Analysis

Problem:
Consider a n × d matrix D of data (n datapoints, d variables).
Assume that each column has mean 0. We want to find k ≤ d
vectors which best capture the variance in the data.

Solution:
Compute the SVD, D = UΣV T , and take the first k singular
vectors (and the singular values are related to the variance of the
data along the principal directions).
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Application: Principal Component Analysis

Problem:
Consider a n × d matrix D of data (n datapoints, d variables).
Assume that each column has mean 0. We want to find k ≤ d
vectors which best capture the variance in the data.
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