Stanford

Institute for Computational & Mathematical

Engineering

Refresher Course Subject Information

Topics Covered - 2024

Applied Calculus (instructor: Chloe Shiff)

- Scalar Calculus
 - Chain rule (single and multivariable)
 - Taylor series and Maclaurin series (with and without time dependence)
 - Integration by parts (divergence theorem from n=1)
 - Fundamental Theorem of Calculus

• Vector Calculus

- Vector fields, gradients, Hessian, divergence, curl, Laplacian
- Divergence theorem (Green's theorem for n=2, integration by parts for n=1), divergence identities, curl identities
- Dot/inner product, cross product

• Matrix Calculus

- Derivation for some examples, chain rule, gradient, Hessian
- Integration by parts (multivariable), inner product, cross product

Fourier Transform

• Definition, examples, and applications

ODEs and PDEs (instructor: Ian Madden)

Review of ODEs

- Analysis/Exact methods for 1st order equations (Separation of variables, Integrating factors, etc)
- Picard's Theorem Numerical methods for 1st order equations (Euler, RK, multistep; stability, consistency, convergence)
- Systems of 1st order equations 2nd order equations Nonlinear equations and linearization (maybe)

PDEs

- Where do they come from? (derivations of physical laws, euler-lagrange equations)
- Examples and intuition (advection equation, conservation laws, diffusion, wave equation, poisson equation)
- Intro to basic numerical schemes (FD, FV, FE)

Linear Algebra (instructor: Rachel Guo)

Matrices

- What are matrices used for? (Systems of linear equations, operators, represent networks or graphs)
- Common matrices
- Matrix, vector, and matrix-vector operations
- Matrix and vector norms
- Matrix inverses and determinants

• Gaussian Elimination

- Elimination and back-substitution
- LU decomposition

· Concepts underlying matrix theory

- Linear combination of vectors, linear (in)dependence, vector space, span, basis, dimension
- Column space, row space, matrix rank, null space

• Eigenvalues and Eigenvectors

- Definition of eigenvalues and eigenvectors
- Diagonalizable matrix and examples

Computing (instructor: Leah Collis)

- Introduction to Stanford Computing
 - Linux and Bash Scripting
 - Git
 - LaTeX
 - MATLAB
 - and other useful software.

Probability and Statistics (instructor: Anish Senapati)

Probability

- Basic Probability Theory: axioms of probability, events (intersection and union), independence, Bayes' rule
- Random Variables: intuition behind random variables, discrete and continuous distributions, examples of common distributions, joint distributions, marginal distributions, conditioning, characteristic functions (as moment generating functions)
- Expectation and higher order moments: mean, variance, moments of a distribution, covariance, properties of expectation
- Useful Inequalities: Markov's inequality, Chebyshev's inequality, Jensen'sinequality
- Convergence: types of convergence, law of large numbers, central limit theorem, delta method

Statistics

- Estimation: maximum likelihood estimation (MLE), unbiased estimators, minimizing mean squared error, confidence intervals.
- Statistical Modeling: linear regression, logistic regression
- Monte Carlo Simulation: concept, implementation, limitations