graph TD
A[元认知监控] --> B(策略选择)
B --> C(认知调节)
C --> D[知识更新]
D --> A
class QuantAgent:
def __init__(self):
self.memory = VectorDB()
self.monitor = PerformanceDiagnoser()
self.strategies = StrategyPool()
async def reasoning_loop(self):
while True:
market_data = await self.fetch_data()
diagnosis = self.monitor.analyze(market_data)
selected_strategy = self.strategies.select(diagnosis)
execution_result = selected_strategy.execute()
self.memory.store(execution_result)
def self_correcting_rag(query, context):
retrieval = HybridRetriever(query, context)
relevance_scorer = LLMScorer(model='gpt-4')
ranked_results = relevance_scorer.rank(retrieval.results)
while ranked_results[0].confidence < 0.85:
query_expander = QueryExpander()
expanded_query = query_expander.generate(query)
retrieval.update(expanded_query)
ranked_results = relevance_scorer.rank(retrieval.results)
return ranked_results[0]
错误类型 | 检测方法 | 校正策略 |
幸存者偏差 | Monte Carlo模拟 | 数据增强 |
过拟合 | Walk-forward检验 | 正则化优化 |
策略衰减 | 动态Sharpe监测 | 参数自适应 |
@agent_function
def generate_strategy(params):
base_strategy = """
def trading_strategy(data):
signals = {}
{feature_engineering}
signals = pd.DataFrame({signal_logic})
return signals
"""
features = GeneticFeatureGenerator(params).evolve()
logic = LogicTreeBuilder(features).build()
return base_strategy.format(
feature_engineering=features.code,
signal_logic=logic.to_code()
)
class CodeOptimizer:
def __init__(self, initial_code):
self.ast = parse(initial_code)
self.optimizations = [
LoopUnroller(),
Vectorization(),
Parallelizer()
]
def optimize(self):
for pass_num in range(3):
for optimizer in self.optimizations:
self.ast = optimizer.apply(self.ast)
return compile(self.ast)
class ResearchAgent(MetaCognitiveAgent):
def __init__(self):
super().__init__()
self.data_pipeline = QuantDataPipeline()
self.model_zoo = ModelRepository()
self.report_generator = LLMReporter()
async def research_cycle(self, topic):
while True:
data = self.data_pipeline.fetch(topic)
analysis = self.parallel_analyze(data)
report = self.report_generator.synthesize(analysis)
if self.metacognition.evaluate(report):
return report
self.adjust_parameters()
维度 | 权重 | 评估指标 |
收益性 | 40% | Sharpe比率 > 2.0 |
稳健性 | 30% | 最大回撤 < 15% |
创新性 | 20% | 专利/新颖方法 |
可解释 | 10% | 可视化报告质量 |