练习1:
从Fama-French数据库获取三因子数据并与股票收益率对齐:
# 依赖数据
ff3_url = "https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/F-F_Research_Data_Factors_daily_CSV.zip"
tickers = ['AAPL', 'MSFT', 'AMZN']
start_date = '2010-01-01'
end_date = '2020-01-01'
练习2:
计算科技板块ETF(XLK)的因子暴露并进行风险分解:
# 依赖数据
xlk_data = yf.download('XLK', '2015-01-01', '2022-12-31')['Close'].pct_change().dropna()
ff3_data = pd.read_csv(ff3_url, skiprows=3, index_col=0, parse_dates=True).loc['2015':'2022'].iloc[:,:3]/100