根据以下代码框架,完成以下任务:
import numpy as np
import matplotlib.pyplot as plt
def generate_test_image(m, n):
X = np.zeros((m, n))
X[50:150, 50:150] = 1 # 正方形
X[75:125, 75:125] = 0 # 中心挖空
X += np.random.randn(*X.shape)*0.1 # 添加噪声
return X
# 生成测试图像
X = generate_test_image(200, 200)
# PCA处理代码框架(需要补充完整)
根据以下数据获取代码,完成PCA分析:
import yfinance as yf
from sklearn.preprocessing import StandardScaler
# 获取不同行业股票数据(2020-2023年)
tech_stocks = ['MSFT', 'GOOG', 'META']
energy_stocks = ['XOM', 'CVX', 'SHEL']
retail_stocks = ['WMT', 'TGT', 'HD']
all_symbols = tech_stocks + energy_stocks + retail_stocks
data = yf.download(all_symbols, start='2020-01-01', end='2023-12-31')['Close']
returns = data.pct_change().dropna()
请完成: