import yfinance as yf
import numpy as np
# 获取阿里巴巴2023年股价数据
baba = yf.download('BABA', start='2023-01-01', end='2023-12-31')['Close']
请完成:
# 获取三家科技公司2023年收盘价
tech_stocks = yf.download(['MSFT', 'GOOG', 'META'],
start='2023-01-01',
end='2023-12-31')['Close']
prices_matrix = tech_stocks.values
请完成:
# 生成4只模拟资产100天的收益率
np.random.seed(2023)
returns = np.random.normal(0.001, 0.02, (4, 100))
# 随机生成投资组合权重
weights = np.random.rand(4)
weights /= weights.sum()
请完成:
# 获取两只股票和标普500指数数据
data = yf.download(['AAPL', 'JPM', '^GSPC'],
start='2020-01-01',
end='2023-12-31')['Close']
daily_returns = data.pct_change().dropna()
请完成:
# 生成模拟数据
n_assets = 5
historical_returns = np.random.normal(0, 0.1, (n_assets, 252))
# 计算传统方式组合方差
weights = np.ones(n_assets)/n_assets
port_var_traditional = np.var(historical_returns.T @ weights)
# 协方差矩阵
cov_mat = np.cov(historical_returns)
请完成:
# 创建包含缺失值的收益数据
returns = np.array([0.01, np.nan, 0.02, -0.03, np.nan, 0.015])
请完成: